首页> 外文会议>Image and signal processing for remote sensing XX >Classification of ocean surface slicks in hybrid-polarimetric SAR data
【24h】

Classification of ocean surface slicks in hybrid-polarimetric SAR data

机译:混合极化SAR数据中的海面浮油分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a strategy for ocean slick classification in SAR images operating in a hybrid-polarimetric mode. The proposed scheme is successfully applied to classify mineral and plant oil slicks in SAR data covering oil spill experiments outside Norway and the Deepwater Horizon incident in the Gulf of Mexico. Using the elements of a hybrid-polarimetric coherency matrix as features, we construct a random forest classifier from training data obtained from an SAR image covering an oil-on-water exercise in the North Sea. The results show that we area able to distinguish mineral oil from plant oil and low wind slicks, however, it is challenging to distinguish the mineral oil types emulsion and crude oil. Due to the potential of wide swath widths, we conclude that hybrid-polarity is an attractive mode for future enhanced SAR-based oil spill monitoring.
机译:在本文中,我们提出了一种在混合极化模式下运行的SAR图像中的浮油分类策略。拟议的方案已成功应用于SAR数据中的矿物和植物浮油的分类,这些数据涵盖了挪威以外的石油泄漏实验以及墨西哥湾的Deepwater Horizo​​n事件。使用混合极化相干矩阵的元素作为特征,我们根据从覆盖北海水上石油演习的SAR图像获得的训练数据构建随机森林分类器。结果表明,我们能够区分植物油和低风浮油中的矿物油,但是,区分矿物油类型的乳液和原油是具有挑战性的。由于宽条幅的潜力,我们得出结论,混合极性是未来增强型基于SAR的溢油监测的一种有吸引力的模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号