首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Linear Fuzzy Clustering Techniques With Missing Values and Their Application to Local Principal Component Analysis
【24h】

Linear Fuzzy Clustering Techniques With Missing Values and Their Application to Local Principal Component Analysis

机译:缺失值的线性模糊聚类技术及其在局部主成分分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose two methods for partitioning an incomplete data set with missing values into several linear fuzzy clusters by extracting local principal components. One is an extension of fuzzy c-varieties clustering that can be regarded as the algorithm for the local principal component analysis of fuzzy covariance matrices. The other is a simultaneous application of fuzzy clustering and principal component analysis of fuzzy correlation matrices. Both methods estimate prototypes ignoring only missing values and they need no preprocessing of data such as the elimination of samples with missing values or the imputation of missing elements. Numerical examples show that the methods provide useful tools for interpretation of the local structures of a database.
机译:在本文中,我们提出了两种通过提取局部主成分将缺失值不完整的数据集划分为几个线性模糊聚类的方法。一种是对模糊c变量聚类的扩展,可以将其视为对模糊协方差矩阵进行局部主成分分析的算法。另一个是模糊聚类和模糊相关矩阵主成分分析的同时应用。两种方法都估计原型时仅忽略缺失值,并且不需要对数据进行预处理,例如消除具有缺失值的样本或估算缺失元素。数值例子表明,这些方法为解释数据库的局部结构提供了有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号