首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Improving the interpretability of TSK fuzzy models by combining global learning and local learning
【24h】

Improving the interpretability of TSK fuzzy models by combining global learning and local learning

机译:通过结合全局学习和局部学习来提高TSK模糊模型的可解释性

获取原文
获取原文并翻译 | 示例

摘要

The fuzzy inference system proposed by Takagi, Sugeno, and Kang, known as the TSK model in fuzzy system literature, provides a powerful tool for modeling complex nonlinear systems. Unlike conventional modeling where a single model is used to describe the global behavior of a system, TSK modeling is essentially a multimodel approach in which simple submodels (typically linear models) are combined to describe the global behavior of the system. Most existing learning algorithms for identifying the TSK model are based on minimizing the square of the residual between the overall outputs of the real system and the identified model. Although these algorithms can generate a TSK model with good global performance (i.e., the model is capable of approximating the given system with arbitrary accuracy, provided that sufficient rules are used and sufficient training data are available), they cannot guarantee the resulting model to have a good local performance. Often, the submodels in the TSK model may exhibit an erratic local behavior, which is difficult to interpret. Since one of the important motivations of using the TSK model (also other fuzzy models) is to gain insights into the model, it is important to investigate the interpretability issue of the TSK model. We propose a new learning algorithm that integrates global learning and local learning in a single algorithmic framework. This algorithm uses the idea of local weighed regression and local approximation in nonparametric statistics, but remains the component of global fitting in the existing learning algorithms. The algorithm is capable of adjusting its parameters based on the user's preference, generating models with good tradeoff in terms of global fitting and local interpretation. We illustrate the performance of the proposed algorithm using a motorcycle crash modeling example.
机译:由Takagi,Sugeno和Kang提出的模糊推理系统在模糊系统文献中被称为TSK模型,为建模复杂的非线性系统提供了强大的工具。与使用单个模型描述系统整体行为的常规建模不同,TSK建模本质上是一种多模型方法,其中将简单的子模型(通常为线性模型)组合起来描述系统的整体行为。用于识别TSK模型的大多数现有学习算法都是基于最小化实际系统的总体输出与所识别模型之间的残差平方。尽管这些算法可以生成具有良好全局性能的TSK模型(即,该模型能够以任意精度近似给定系统,但前提是要使用足够的规则并有足够的训练数据可用),但它们不能保证所得的模型具有良好的本地表现。通常,TSK模型中的子模型可能表现出不稳定的局部行为,这很难解释。由于使用TSK模型(以及其他模糊模型)的重要动机之一是获得对该模型的见识,因此研究TSK模型的可解释性问题很重要。我们提出了一种新的学习算法,该算法在一个算法框架中整合了全局学习和局部学习。该算法使用了非参数统计中的局部加权回归和局部逼近的思想,但仍是现有学习算法中全局拟合的组成部分。该算法能够根据用户的偏好来调整其参数,从而在全局拟合和局部解释方面产生具有良好权衡的模型。我们使用摩托车碰撞建模示例来说明所提出算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号