首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks
【24h】

Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks

机译:模糊有限状态自动机可以确定性地编码到递归神经网络中

获取原文
获取原文并翻译 | 示例

摘要

There has been an increased interest in combining fuzzy systems with neural networks because fuzzy neural systems merge the advantages of both paradigms. On the one hand, parameters in fuzzy systems have clear physical meanings and rule-based and linguistic information can be incorporated into adaptive fuzzy systems in a systematic way. On the other hand, there exist powerful algorithms for training various neural network models. However, most of the proposed combined architectures are only able to process static input-output relationships; they are not able to process temporal input sequences of arbitrary length. Fuzzy finite-state automats (FFAs) can model dynamical processes whose current state depends on the current input and previous states. Unlike in the case of deterministic finite-state automats (DFAs), FFAs are not in one particular state, rather each state is occupied to some degree defined by a membership function. Based on previous work on encoding DFAs in discrete-time second-order recurrent neural networks, we propose an algorithm that constructs an augmented recurrent neural network that encodes a FFA and recognizes a given fuzzy regular language with arbitrary accuracy. We then empirically verify the encoding methodology by correct string recognition of randomly generated FFAs. In particular, we examine how the networks' performance varies as a function of synaptic weight strengths.
机译:由于模糊神经系统融合了两种范式的优点,因此人们对将模糊系统与神经网络相结合的兴趣日益浓厚。一方面,模糊系统中的参数具有明确的物理含义,并且可以将基于规则和语言的信息以系统的方式并入自适应模糊系统中。另一方面,存在用于训练各种神经网络模型的强大算法。但是,大多数提议的组合体系结构只能处理静态的输入-输出关系。它们不能处理任意长度的时间输入序列。模糊有限状态自动机(FFA)可以对动态过程进行建模,这些动态过程的当前状态取决于当前输入和先前状态。与确定性有限状态自动机(DFA)的情况不同,FFA并非处于一种特定状态,而是每种状态都在某种程度上由隶属函数定义。基于先前在离散时间二阶递归神经网络中对DFA进行编码的工作,我们提出了一种算法,该算法构建了增强的递归神经网络,该算法对FFA进行编码并以任意精度识别给定的模糊规则语言。然后,我们通过对随机生成的FFA进行正确的字符串识别来经验验证编码方法。特别是,我们研究了网络性能如何随着突触重量强度的变化而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号