首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Parameter Identification of Recurrent Fuzzy Systems With Fuzzy Finite-State Automata Representation
【24h】

Parameter Identification of Recurrent Fuzzy Systems With Fuzzy Finite-State Automata Representation

机译:具有模糊有限状态自动机表示的递归模糊系统参数辨识

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the identification of nonlinear dynamical systems by recurrent fuzzy system (RFS) models. Two types of RFS models are discussed: the Takagi–Sugeno–Kang (TSK) type and the linguistic or Mamdani type. Both models are equivalent and the latter model may be represented by a fuzzy finite-state automaton (FFA). An identification procedure is proposed based on a standard general purpose genetic algorithm (GA). First, the TSK rule parameters are estimated and, in a second step, the TSK model is converted into an equivalent linguistic model. The parameter identification is evaluated in some benchmark problems for nonlinear system identification described in literature. The results show that RFS models achieve good numerical performance while keeping the interpretability of the actual system dynamics.
机译:本文提出了基于递归模糊系统(RFS)模型的非线性动力学系统的辨识。讨论了两种类型的RFS模型:Takagi–Sugeno–Kang(TSK)类型和语言或Mamdani类型。两种模型都是等效的,后一种模型可以用模糊有限状态自动机(FFA)表示。提出了一种基于标准通用遗传算法(GA)的识别程序。首先,估计TSK规则参数,然后在第二步中,将TSK模型转换为等效的语言模型。在文献中描述的非线性系统识别的一些基准测试问题中,对参数识别进行了评估。结果表明,RFS模型在保持实际系统动力学的可解释性的同时,取得了良好的数值性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号