首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Modeling and Optimal Control of Batch Processes Using Recurrent Neuro-Fuzzy Networks
【24h】

Modeling and Optimal Control of Batch Processes Using Recurrent Neuro-Fuzzy Networks

机译:使用递归神经模糊网络的批生产过程建模和最优控制

获取原文
获取原文并翻译 | 示例

摘要

A recurrent neuro-fuzzy network based strategy for batch process modeling and optimal control is presented in this paper. The recurrent neuro-fuzzy network allows the construction of a "global" nonlinear long-range prediction model from the fuzzy conjunction of a number of "local" linear dynamic models. In this recurrent neuro-fuzzy network, the network output is fed back to the network input through one or more time delay units. This particular structure ensures that predictions from a recurrent neuro-fuzzy network are long-range or multi-step-ahead predictions. Long-range predictions are particularly important for batch processes where the interest lies in the product quality and quantity at the end of a batch. To enhance batch process control and monitoring, a model capable of predicting accurately the product quality/quantity at the end of a batch is required. Process knowledge is used to initially partition the process nonlinear characteristics into several local operating regions and to aid in the initialization of the corresponding network weights. Process input output data is then used to train the network. Membership functions of the local regimes are identified and local models are discovered through network training. An advantage of this recurrent neuro-fuzzy network model is that it is easy to interpret. This helps process operators in understanding the process characteristics. The proposed technique is applied to the modeling and optimal control of a fed-batch reactor.
机译:提出了一种基于递归神经模糊网络的批处理过程建模和最优控制策略。递归神经模糊网络允许从许多“局部”线性动态模型的模糊合取中构建“全局”非线性远程预测模型。在这种递归神经模糊网络中,网络输出通过一个或多个时间延迟单元反馈到网络输入。这种特殊的结构可确保来自递归神经模糊网络的预测是远程或多步预测。远程预测对于批处理尤其重要,因为批处理的重点在于批生产结束时的产品质量和数量。为了增强批生产过程的控制和监视,需要一种能够在批生产结束时准确预测产品质量/数量的模型。过程知识可用于将过程非线性特性最初划分为几个局部操作区域,并有助于初始化相应的网络权重。然后,将过程输入输出数据用于训练网络。通过网络培训,确定地方政权的成员职能,并发现地方模型。这种递归神经模糊网络模型的一个优点是易于解释。这有助于过程操作员了解过程特征。所提出的技术被应用于补料分批反应器的建模和最优控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号