首页> 外文期刊>Neurocomputing >Modelling and optimal control of fed-batch processes using a novel control affine feedforward neural network
【24h】

Modelling and optimal control of fed-batch processes using a novel control affine feedforward neural network

机译:使用新型控制仿射前馈神经网络的分批补料过程建模和最优控制

获取原文
获取原文并翻译 | 示例

摘要

Many fed-batch processes can be considered as a class of control affine nonlinear systems. In this paper, a new type of neural network for modelling fed-batch processes, called as control affine feedforward neural network (CAFNN), is proposed. For constrained nonlinear optimal control of fed-batch processes, CAFNN offers an effective and simple optimal control strategy by sequential quadratic programming (SQP) where the gradient information can be computed directly from CAFNN. Thus the nonlinear programming problem can then be solved more accurately and efficiently. The proposed modelling and optimal control scheme are illustrated on a nonlinear system and a simulated fed-batch ethanol fermentation process.
机译:许多补料分批过程可以视为一类控制仿射非线性系统。在本文中,提出了一种用于模拟补料生产过程的新型神经网络,称为控制仿射前馈神经网络(CAFNN)。对于分批补料过程的约束非线性最优控制,CAFNN通过顺序二次规划(SQP)提供了有效而简单的最优控制策略,其中梯度信息可直接从CAFNN计算。因此,非线性编程问题可以被更准确和有效地解决。在非线性系统和模拟补料分批乙醇发酵过程中,阐述了所提出的建模和最优控制方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号