首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Optimizing Fuzzy Neural Networks for Tuning PID Controllers Using an Orthogonal Simulated Annealing Algorithm OSA
【24h】

Optimizing Fuzzy Neural Networks for Tuning PID Controllers Using an Orthogonal Simulated Annealing Algorithm OSA

机译:使用正交模拟退火算法OSA优化PID控制器的模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we formulate an optimization problem of establishing a fuzzy neural network model (FNNM) for efficiently tuning proportional-integral-derivative (PID) controllers of various test plants with under-damped responses using a large number P of training plants such that the mean tracking error J of the obtained P control systems is minimized. The FNNM consists of four fuzzy neural networks (FNNs) where each FNN models one of controller parameters (K, T{sub}i, T{sub}d, and b) of PID controllers. An existing indirect, two-stage approach used a dominant pole assignment method with P = 198 to find the corresponding PID controllers. Consequently, an adaptive neuro-fuzzy inference system (ANFIS) is used to independently train the four individual FNNs using input the selected 176 of the 198 PID controllers that 22 controllers with parameters having large variation are abandoned. The innovation of the proposed approach is to directly and simultaneously optimize the four FNNs by using a novel orthogonal simulated annealing algorithm (OSA). High performance of the OSA-based approach arises from that OSA can effectively optimize lots of parameters of the FNNM to minimize J. It is shown that the OSA-based FNNM with P = 176 can improve the ANFIS-based FNNM in averagely decreasing 13.08% error J and 88.07% tracking error of the 22 test plants by refining the solution of the ANFIS-based method. Furthermore, the OSA-based FNNMs using P = 198 and 396 from an extensive tuning domain have similar good performance with that using P = 176 in terms of J.
机译:在本文中,我们提出了一个优化问题,即建立模糊神经网络模型(FNNM),以使用大量P训练工厂来有效地调节响应不足的各种测试工厂的比例积分微分(PID)控制器,从而使得获得的P控制系统的平均跟踪误差J最小。 FNNM由四个模糊神经网络(FNN)组成,其中每个FNN都对PID控制器的控制器参数(K,T {sub} i,T {sub} d和b)之一进行建模。现有的间接两阶段方法使用P = 198的主导极点分配方法来找到相应的PID控制器。因此,使用自适应神经模糊推理系统(ANFIS)通过输入198个PID控制器中选择的176个来独立地训练四个单独的FNN,其中22个具有较大变化参数的控制器被放弃。所提出的方法的创新是通过使用新颖的正交模拟退火算法(OSA)直接并同时优化四个FNN。基于OSA的方法的高性能源自于OSA可以有效地优化FNNM的许多参数以最小化J。结果表明,基于OSA的FNNM(P = 176)可以改善基于ANFIS的FNNM,平均降低13.08%通过改进基于ANFIS的方法的解决方案,对22个测试工厂的误差J和88.07%的跟踪误差进行了修正。此外,在J方面,使用来自广泛调整域的P = 198和396的基于OSA的FNNM具有与使用P = 176相似的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号