首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Combined Adaptive Law for Fuzzy Iterative Learning Control of Nonlinear Systems With Varying Control Tasks
【24h】

A Combined Adaptive Law for Fuzzy Iterative Learning Control of Nonlinear Systems With Varying Control Tasks

机译:变控制任务的非线性系统模糊迭代学习控制的组合自适应律

获取原文
获取原文并翻译 | 示例

摘要

To deal with the iterative control of uncertain nonlinear systems with varying control tasks, nonzero initial resetting state errors, and nonrepeatable mismatched input disturbance, a new adaptive fuzzy iterative learning controller is proposed in this paper. The main structure of this learning controller is constructed by a fuzzy learning component and a robust learning component. For the fuzzy learning component, a fuzzy system used as an approximator is designed to compensate for the plant nonlinearity. For the robust learning component, a sliding-mode-like strategy is applied to overcome the nonlinear input gain, input disturbance, and fuzzy approximation error. Both designs are based on a time-varying boundary layer which is introduced not only to solve the problem of initial state errors but also to eliminate the possible undesirable chattering behavior. A new adaptive law combining time- and iteration-domain adaptation is derived to search for suitable values of control parameters and then guarantee the closed-loop stability and error convergence. This adaptive algorithm is designed without using projection or deadzone mechanism. With a suitable choice of the weighting gain, the memory size for the storage of parameter profiles can be greatly reduced. It is shown that all the adjustable parameters as well as internal signals remain bounded for all iterations. Moreover, the norm of tracking state error vector will asymptotically converge to a tunable residual set even when the desired tracking trajectory is varying between successive iterations.
机译:针对具有变化控制任务,非零初始复位状态误差和不可重复失配输入干扰的不确定非线性系统的迭代控制,提出了一种新型的自适应模糊迭代学习控制器。该学习控制器的主要结构由模糊学习组件和鲁棒学习组件构成。对于模糊学习组件,设计了一个用作逼近器的模糊系统,以补偿设备的非线性。对于鲁棒的学习组件,应采用类似滑模的策略来克服非线性输入增益,输入干扰和模糊近似误差。两种设计都基于时变边界层,引入该边界层不仅是为了解决初始状态错误的问题,而且是为了消除可能的不希望的颤动行为。提出了一种结合时域和迭代域自适应的新自适应律,以寻找合适的控制参数值,然后保证闭环稳定性和误差收敛。设计该自适应算法时不使用投影或死区机制。通过适当选择加权增益,可以大大减少用于存储参数配置文件的存储器大小。结果表明,所有可调参数以及内部信号对于所有迭代都保持有界。而且,即使当所需的跟踪轨迹在连续迭代之间变化时,跟踪状态误差向量的范数也将渐近收敛到可调残差集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号