首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Adaptive Fuzzy Control for a Class of Nonlinear Discrete-Time Systems With Backlash
【24h】

Adaptive Fuzzy Control for a Class of Nonlinear Discrete-Time Systems With Backlash

机译:一类带有间隙的非线性离散系统的自适应模糊控制

获取原文
获取原文并翻译 | 示例

摘要

An adaptive fuzzy controller design is studied for uncertain nonlinear systems in this paper. The considered systems are of the discrete-time form in a triangular structure and include the backlash and the external disturbance. By using the prediction function of future states, the systems are transformed into an $n$-step ahead predictor. The fuzzy logic systems (FLSs) are used to approximate the unknown functions, unknown backlash, and backlash inversion, respectively. A discrete-time tuning algorithm is developed to estimate the optimal fuzzy parameters. Compared with the previous works for the discrete-time systems with backlash, the main contributions of the paper are that 1) the rigorous restriction for the functional estimation error is removed, and 2) the external disturbance is bounded, but the bound is not required to be known. A novel controller and the adaptation laws are constructed by using the discrete Taylor series expansion and the difference Lyapunov analysis, and thus, those limitations in the previous works are overcome. It is proven that all the signals in the closed-loop system are bounded and that the system output can be to follow the reference signal to a bounded compact set. A simulation example is provided to illustrate the effectiveness of the proposed approach.
机译:研究了不确定非线性系统的自适应模糊控制器设计。所考虑的系统具有三角形结构的离散时间形式,并包括反冲和外部干扰。通过使用未来状态的预测功能,将系统转换为 $ n $ 提前预测器。模糊逻辑系统(FLS)分别用于近似未知函数,未知反冲和反冲反演。开发了一种离散时间调整算法来估计最佳模糊参数。与以前的有间隙的离散系统的工作相比,本文的主要贡献在于:1)消除了对功能估计误差的严格限制,以及2)限制了外部干扰,但是不需要限制众所周知。利用离散泰勒级数展开式和差分李雅普诺夫分析法构造了一种新颖的控制器和自适应律,从而克服了先前工作中的局限性。事实证明,闭环系统中的所有信号都是有界的,并且系统输出可以跟随参考信号到达有界的紧集。仿真例子说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号