首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Intelligent Control Using the Wavelet Fuzzy CMAC Backstepping Control System for Two-Axis Linear Piezoelectric Ceramic Motor Drive Systems
【24h】

Intelligent Control Using the Wavelet Fuzzy CMAC Backstepping Control System for Two-Axis Linear Piezoelectric Ceramic Motor Drive Systems

机译:基于小波模糊CMAC逆推控制系统的两轴线性压电陶瓷电机驱动系统智能控制

获取原文
获取原文并翻译 | 示例

摘要

This study aims to propose a more efficient control algorithm to achieve precision trajectory tracking control for a two-axis linear piezoelectric ceramic motor (LPCM). Since the inherent nonlinear nature and cross-coupling effect of a two-axis LPCM, its accurate model is difficult to obtain; thus, an intelligent adaptive wavelet fuzzy cerebellar model articulation controller backstepping (AWFCB) control system is designed to achieve high precision trajectory tracking control for a two-axis LPCM drive system. A novel wavelet fuzzy cerebellar model articulation controller (CMAC) is proposed in this paper; in some special cases, it can be reduced to a fuzzy system, a fuzzy neural network, a wavelet fuzzy neural network, or a conventional CMAC. The developed wavelet fuzzy CMAC incorporates the wavelet decomposition property and a fuzzy CMAC fast learning ability; thus, it is used for the LPCM control. In the AWFCB control system, a wavelet fuzzy CMAC is used to imitate an ideal backstepping controller, and a smooth compensator is designed to eliminate the residual of the approximation error between the wavelet fuzzy CMAC and the ideal backstepping controller. In order to guarantee the convergence of the tracking error, analytical methods using the Lyapunov function are utilized to derive the adaptation laws to tune the parameters of the control system online. Thus, the stability of the two-axis LPCM control system can be guaranteed. Finally, the experimental results show the precision of the trajectory tracking using AWFCB control. Compared with PID control and adaptive fuzzy sliding-mode control, the AWFCB control can achieve tracking error reduction of about 80%~99% and 48%~97%, respectively.
机译:这项研究旨在提出一种更有效的控制算法,以实现两轴线性压电陶瓷电机(LPCM)的精确轨迹跟踪控制。由于两轴LPCM具有固有的非线性特性和交叉耦合效应,因此难以获得其精确模型;因此,设计了一种智能自适应小波模糊小脑模型关节控制器反推(AWFCB)控制系统,以实现两轴LPCM驱动系统的高精度轨迹跟踪控制。提出了一种新型的小波模糊小脑模型关节控制器(CMAC)。在某些特殊情况下,可以将其简化为模糊系统,模糊神经网络,小波模糊神经网络或常规CMAC。所开发的小波模糊CMAC具有小波分解特性和模糊CMAC快速学习能力。因此,它用于LPCM控制。在AWFCB控制系统中,小波模糊CMAC用于模仿理想的反推控制器,平滑补偿器设计用于消除小波模糊CMAC与理想反推控制器之间的近似误差残差。为了保证跟踪误差的收敛性,利用李雅普诺夫函数的分析方法来推导自适应律,以在线调整控制系统的参数。因此,可以保证两轴LPCM控制系统的稳定性。最后,实验结果表明了使用AWFCB控制的轨迹跟踪精度。与PID控制和自适应模糊滑模控制相比,AWFCB控制可分别降低跟踪误差约80%〜99%和48%〜97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号