首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Efficient Multiple Kernel Classification Using Feature and Decision Level Fusion
【24h】

Efficient Multiple Kernel Classification Using Feature and Decision Level Fusion

机译:使用特征和决策层融合的高效多核分类

获取原文
获取原文并翻译 | 示例

摘要

Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the precomputed kernels, but determining the summation weights is not a trivial task. Furthermore, MKL does not work well with large datasets because of limited storage space and prediction speed. In this paper, we address all three of these multiple kernel challenges. First, we introduce a new linear feature level fusion technique and learning algorithm, GAMKLp. Second, we put forth three new algorithms, DeFIMKL, DeGAMKL, and DeLSMKL, for nonlinear fusion of kernels at the decision level. To address MKL's storage and speed drawbacks, we apply the Nystrom approximation to the kernel matrices. We compare our methods to a successful and state-of-the-art technique called MKL-group lasso (MKLGL), and experiments on several benchmark datasets show that some of our proposed algorithms outperform MKLGL when applied to support vector machine (SVM)-based classification. However, to no surprise, there does not seem to be a global winner but instead different strategies that a user can employ. Experiments with our kernel approximation method show that we can routinely discard most of the training data and at least double prediction speed without sacrificing classification accuracy. These results suggest that MKL-based classification techniques can be applied to big data efficiently, which is confirmed by an experiment using a large dataset.
机译:用于分类的内核方法是一个经过充分研究的领域,其中将数据从低维空间隐式映射到高维空间以提高分类精度。但是,对于大多数内核方法,仍然必须选择一个内核来解决该问题。由于通常没有办法知道哪个内核是最好的,因此多内核学习(MKL)是一种用于学习将一组有效内核聚合为单个(理想)高级内核的技术。可以使用预先计算的内核的加权总和来完成聚合,但是确定总和权重并非易事。此外,由于存储空间和预测速度有限,MKL不适用于大型数据集。在本文中,我们解决了所有这三个多重内核挑战。首先,我们介绍一种新的线性特征级融合技术和学习算法GAMKLp。其次,针对决策层内核的非线性融合,我们提出了三种新算法DeFIMKL,DeGAMKL和DeLSMKL。为了解决MKL的存储和速度方面的缺点,我们将Nystrom近似应用于内核矩阵。我们将我们的方法与成功的最新技术称为MKL-group套索(MKLGL)进行了比较,并且在一些基准数据集上进行的实验表明,当将某些算法应用于支持向量机(SVM)时,其性能优于MKLGL。基于分类。但是,毫不奇怪,似乎没有全球性的赢家,而是用户可以采用的不同策略。使用我们的核近似方法进行的实验表明,我们可以在不牺牲分类精度的情况下常规丢弃大部分训练数据,并且至少可以提高两倍的预测速度。这些结果表明,基于MKL的分类技术可以有效地应用于大数据,这一点已通过使用大型数据集的实验得到证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号