首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Multiple Feature-Based Superpixel-Level Decision Fusion for Hyperspectral and LiDAR Data Classification
【24h】

Multiple Feature-Based Superpixel-Level Decision Fusion for Hyperspectral and LiDAR Data Classification

机译:高光谱和LIDAR数据分类的多个特征的超顶序决策融合

获取原文
获取原文并翻译 | 示例

摘要

The rapid increase in the number of remote sensing sensors makes it possible to develop multisource feature extraction and fusion techniques to improve the classification accuracy of surface materials. It has been reported that light detection and ranging (LiDAR) data can contribute complementary information to hyperspectral images (HSIs). In this article, a multiple feature-based superpixel-level decision fusion (MFSuDF) method is proposed for HSIs and LiDAR data classification. Specifically, superpixel-guided kernel principal component analysis (KPCA) is first designed and applied to HSIs to both reduce the dimensions and compress the noise impact. Next, 2-D and 3-D Gabor filters are, respectively, employed on the KPCA-reduced HSIs and LiDAR data to obtain discriminative Gabor features, and the magnitude and phase information are both taken into account. Three different modules, including the raw data-based feature cube (concatenated KPCA-reduced HSIs and LiDAR data), the Gabor magnitude feature cube, and the Gabor phase feature cube (concatenation of the corresponding Gabor features extracted from the KPCA-reduced HSIs and LiDAR data), can be, thus, achieved. After that, random forest (RF) classifier and quadrant bit coding (QBC) are introduced to separately accomplish the classification task on the aforementioned three extracted feature cubes. Alternatively, two superpixel maps are generated by utilizing the multichannel simple noniterative clustering (SNIC) and entropy rate superpixel segmentation (ERS) algorithms on the combined HSIs and LiDAR data, which are then used to regularize the three classification maps. Finally, a weighted majority voting-based decision fusion strategy is incorporated to effectively enhance the joint use of the multisource data. The proposed approach is, thus, named MFSuDF. A series of experiments are conducted on three real-world data sets to demonstrate the effectiveness of the proposed MFSuDF approach. The experimental results show that our MFSuDF can achieve the overall accuracy of 73.64%, 93.88%, and 74.11% for Houston, Trento, and Missouri University and University of Florida (MUUFL) Gulport data sets, respectively, when there are only three samples per class for training.
机译:遥感传感器数量的快速增加使得可以开发多源特征提取和融合技术,以提高表面材料的分类精度。据报道,光检测和测距(LIDAR)数据可以将互补信息贡献到高光谱图像(HSIS)。在本文中,提出了一种用于HSIS和LIDAR数据分类的多个基于Superixel级别决策融合(MFSUDF)方法。具体而言,首先设计超棒引导的内核主成分分析(KPCA),并将其应用于HSI,以减少尺寸并压缩噪声冲击。接下来,在KPCA减少的HSI和LIDAR数据上分别用于获得2-D和3-D GABOR滤波器以获得鉴别性Gabor特征,并且幅度和相位信息都考虑在内。三个不同的模块,包括基于原始的基于数据的特征立方体(连接的KPCA减少的HSIS和LIDAR数据),Gabor幅度特征立方体和Gabor阶段特征立方体(从KPCA减少的HSI中提取的相应Gabor特征的串联LIDAR数据)可以是,可以实现。之后,随机森林(RF)分类器和象限编码(QBC)被引入以单独完成上述三个提取的特征多维数据集的分类任务。或者,通过利用组合的HSI和LIDAR数据上利用多通道简单的非特征聚类(SNIC)和熵速率超顶链分割(ERS)算法来生成两个Superpixel映射,然后使用它们用于规范三个分类图。最后,纳入了加权多数投票的决策融合策略,以有效增强了多源数据的关节使用。因此,所提出的方法是命名的MFSUDF。在三个真实数据集中进行了一系列实验,以证明提出的MFSUDF方法的有效性。实验结果表明,对于休斯顿,特伦托和密苏里大学和佛罗里达大学(Muufl)Gulport数据集,我们的MFSUDF可以实现73.64%,93.88%和74.11%的总体准确性,当时只有三个样本课堂培训。

著录项

  • 来源
  • 作者单位

    Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen University Shenzhen China;

    Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen University Shenzhen China;

    Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen University Shenzhen China;

    Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen University Shenzhen China;

    Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ) Shenzhen University Shenzhen China;

    School of Information and Communication Technology Griffith University Nathan QLD Australia;

    School of Engineering and Information Technology The University of New South Wales Canberra ACT Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Laser radar; Feature extraction; Hyperspectral imaging; Sensors; Data mining;

    机译:激光雷达;特征提取;高光谱成像;传感器;数据挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号