首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Integral With Particle Swarm Optimization for a Motor-Imagery-Based Brain–Computer Interface
【24h】

Fuzzy Integral With Particle Swarm Optimization for a Motor-Imagery-Based Brain–Computer Interface

机译:基于运动图像的脑机接口的模糊综合与粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

A brain–computer interface (BCI) system using electroencephalography signals provides a convenient means of communication between the human brain and a computer. Motor imagery (MI), in which motor actions are mentally rehearsed without engaging in actual physical execution, has been widely used as a major BCI approach. One robust algorithm that can successfully cope with the individual differences in MI-related rhythmic patterns is to create diverse ensemble classifiers using the subband common spatial pattern (SBCSP) method. To aggregate outputs of ensemble members, this study uses fuzzy integral with particle swarm optimization (PSO), which can regulate subject-specific parameters for the assignment of optimal confidence levels for classifiers. The proposed system combining SBCSP, fuzzy integral, and PSO exhibits robust performance for offline single-trial classification of MI and real-time control of a robotic arm using MI. This paper represents the first attempt to utilize fuzzy fusion technique to attack the individual differences problem of MI applications in real-world noisy environments. The results of this study demonstrate the practical feasibility of implementing the proposed method for real-world applications.
机译:使用脑电图信号的脑机接口(BCI)系统为人脑与计算机之间的通讯提供了便利。运动影像(MI)被广泛用作主要的BCI方法,其中在不进行实际身体执行的情况下就对运动动作进行了心理训练。一种可以成功解决MI相关节奏模式中个体差异的稳健算法是使用子带公共空间模式(SBCSP)方法创建各种集成分类器。为了汇总合奏成员的输出,本研究使用带有粒子群优化(PSO)的模糊积分,可以调节特定主题的参数以分配分类器的最佳置信度。所提出的系统结合了SBCSP,模糊积分和PSO,对MI的离线单次试验分类和使用MI的机械臂的实时控制均表现出强大的性能。本文代表了首次尝试使用模糊融合技术来攻击现实噪声环境中MI应用程序的个体差异问题。这项研究的结果证明了在实际应用中实施该方法的实际可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号