首页> 外文期刊>IEEE computational intelligence magazine >Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-Based Brain Computer Interface
【24h】

Multimodal Fuzzy Fusion for Enhancing the Motor-Imagery-Based Brain Computer Interface

机译:多峰模糊融合,以增强基于运动图像的脑计算机接口

获取原文
获取原文并翻译 | 示例

摘要

Brain-computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery-based brain-computer interfaces are popular because they avoid unnecessary external stimuli. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain-computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain-computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain-computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain-computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain-computer interface commands.
机译:脑机接口技术,例如稳态视觉诱发电位,P300和运动图像,是人脑与外部设备之间进行通信的方法。基于运动图像的脑机接口之所以受欢迎,是因为它们避免了不必要的外部刺激。尽管在基于运动图像的脑机接口研究中的几种机器智能系统中已经说明了特征提取方法,但是性能仍然不能令人满意。对于模糊积分,Choquet积分和Sugeno积分的使用,人们越来越感兴趣,它们适用于数据融合必须考虑可能的数据交互作用的应用程序。为了提高脑机接口的分类精度,在采用传统脑机接口的分类方法之后,我们采用模糊积分,以考虑数据之间可能的联系。随后,我们提出了一种新颖的分类框架,称为基于多模式模糊融合的脑机接口系统。 10名志愿者进行了基于运动图像的脑机接口实验,我们同时获取了脑电图信号。与传统的脑机接口系统相比,基于多模式模糊融合的脑机接口系统具有更高的性能。此外,当使用与运动图像相关的脑电图频率alpha和beta波段作为输入特征时,该系统使用Choquet和Sugeno积分获得了最高的准确度,分别高达78.81%和78.45%。在这里,我们提出了一种新的概念,用于增强采用模糊积分的脑机接口系统,尤其是在对脑机接口命令进行分类的融合中。

著录项

  • 来源
    《IEEE computational intelligence magazine》 |2019年第1期|96-106|共11页
  • 作者单位

    Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan|Natl Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2, Hsinchu, Taiwan;

    Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan|Natl Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2, Hsinchu, Taiwan;

    Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu, Taiwan|Natl Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS2, Hsinchu, Taiwan;

    Univ Publ Navarra, Dept Stat Comp Sci & Math, Pamplona, Spain|Univ Publ Navarra, Inst Smart Cities, Pamplona, Spain;

    Univ Publ Navarra, Dept Stat Comp Sci & Math, Pamplona, Spain|Univ Publ Navarra, Inst Smart Cities, Pamplona, Spain;

    Univ Publ Navarra, Dept Stat Comp Sci & Math, Pamplona, Spain|Univ Publ Navarra, Inst Smart Cities, Pamplona, Spain;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, CIBCI Lab, Sydney, NSW, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, CIBCI Lab, Sydney, NSW, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, CIBCI Lab, Sydney, NSW, Australia;

    Univ Fed Rio Grande, Ctr Ciendas Computacionais, Rio Grande, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号