首页> 外文期刊>IEEE Transactions on Fuzzy Systems >ANCS: Automatic NXDomain Classification System Based on Incremental Fuzzy Rough Sets Machine Learning
【24h】

ANCS: Automatic NXDomain Classification System Based on Incremental Fuzzy Rough Sets Machine Learning

机译:ANC:基于增量模糊粗糙集机学习的自动NX域分类系统

获取原文
获取原文并翻译 | 示例

摘要

Botmasters generate a large number of malicious algorithmically generated domains (mAGDs) through domain generation algorithms (DGAs) to infect a large number of hosts on a network, which creates inconvenience in people's network lives. The workload of detecting mAGDs by collecting the responses of the domain name system (DNS) is considerable. In this article, we propose a system named the automatic NXDomain classification system (ANCS) that can automatically identify and classify the nonexistent domain (NXD) as benign or malicious by studying the features extracted from benign NXDs (bNXDs) and mAGDs. The ANCS uses online, incremental, and fuzzy rough sets machine learning to improve the time, memory, false positive rate, false negative rate, and accuracy of the detection process. First, an online and incremental algorithm can reduce the training time. Second, the addition of fuzzy rough sets can dynamically adjust the degree of the membership function, optimizing the weight distribution of each feature, and further, improving the classification accuracy. The experimental evaluation shows that the ANCS can reach a very high classification accuracy at a low false positive rate and a low false negative rate, which has good practicability. Moreover, both time and memory are well guaranteed, and the ANCS also has good generalization performance, making up for sensitive points of noisy samples and the lack of nonincremental machine learning.
机译:BOTMASER通过域生成算法(DGA)生成大量恶意算法生成的域(MAGD),以在网络上感染大量主机,这在人们的网络生活中会产生不便。通过收集域名系统(DNS)的响应来检测MAGD的工作量是相当大的。在本文中,我们提出了一个名为“自动NXDOMAIN分类系统(ANC)的系统,该系统可以通过研究从良性NXDS(BNXDS)和MAGD中提取的功能来自动识别和分类为良性或恶意。 ANC使用在线,增量和模糊粗糙集机学习,提高时间,内存,假率,假负率,以及检测过程的准确性。首先,在线和增量算法可以减少训练时间。其次,添加模糊粗糙集可以动态调整成员函数的程度,优化每个特征的重量分布,进一步提高分类准确性。实验评估表明,ANC可以以低误率和低假负速率达到非常高的分类精度,具有良好的实用性。此外,时间和内存都保证很好,并且ANC也具有良好的泛化性能,弥补噪声样本的敏感点和缺乏无扰动机器学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号