首页> 外文期刊>Knowledge-Based Systems >Incremental fuzzy cluster ensemble learning based on rough set theory
【24h】

Incremental fuzzy cluster ensemble learning based on rough set theory

机译:基于粗糙集理论的增量模糊聚类集成学习

获取原文
获取原文并翻译 | 示例

摘要

To deal with the uncertainty, vagueness and overlapping distribution within the data sets, a novel incremental fuzzy cluster ensemble method based on rough set theory (IFCERS) is proposed by the idea of combining clustering analysis task with classification techniques. Firstly, on the basis of soft clustering results, the positive region, boundary region and negative region of clustering ensemble are obtained by applying the construction of rough approximation in rough set theory, and then a group structure within data points of positive region is obtained by adopting a fuzzy cluster ensemble method. Secondly, by combining with the supervised ensemble learning method, e.g., random forests, the obtained group structure is used to construct the random forests classifier to classify the data points in boundary region. Finally, all the acquired group structure is used to train the random forests classifier to classify the data points of negative region. Experimental evaluations on UCI machine learning repository datasets verify the effectiveness of the proposed method. It is also shown that the quality of the final solution has a weak correlation with the ensemble size, the parameter setting on the rough approximations construction is appropriate, and the proposed method is robust towards the diversity from hard clustering members. (C) 2017 Elsevier B.V. All rights reserved.
机译:针对聚类分析任务与分类技术相结合的思想,提出了一种基于粗糙集理论(IFCERS)的增量式模糊聚类集成方法。首先,基于软聚类结果,通过应用粗糙集理论中的粗糙近似构造,得到聚类集合体的正区域,边界区域和负区域,然后,通过正集合的数据点获得群结构。采用模糊聚类集成方法。其次,通过结合监督集成学习方法,例如随机森林,将获得的组结构用于构建随机森林分类器以对边界区域中的数据点进行分类。最后,将所有获取的组结构用于训练随机森林分类器以对负区域的数据点进行分类。对UCI机器学习存储库数据集的实验评估证明了该方法的有效性。还表明,最终解的质量与整体大小之间的相关性较弱,在粗略近似构造上的参数设置是适当的,并且所提出的方法对于来自硬聚类成员的多样性是鲁棒的。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第15期|144-155|共12页
  • 作者单位

    Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China;

    Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China;

    Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa, Iwate 0200693, Japan;

    Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cluster ensemble; Granular computing; Rough sets; Random forests;

    机译:集群集成;粒度计算;粗糙集;随机森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号