首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiple-Surface-Approximation-Based FCM With Interval Memberships for Bias Correction and Segmentation of Brain MRI
【24h】

Multiple-Surface-Approximation-Based FCM With Interval Memberships for Bias Correction and Segmentation of Brain MRI

机译:基于多表面近似的FCM,具有偏置校正和脑MRI分割的间隔隶属关系

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy c-means (FCM) is a popular clustering method for image segmentation. However, FCM has difficulties in handling artifacts in brain magnetic resonance imaging (MRI), especially when it comes to bias field and noise. We propose a novel multiple-surface-approximation-based FCM with interval membership method for simultaneous bias correction and segmentation of Brain MRI. First, multiple surface representation of bias field is embedded into FCM to estimate and correct bias field. Then memberships of the improved FCM are extended to intervals. After the extension, clustering centers of different MR brain tissues could be solved more properly by the proposed method. Moreover, the proposed method is less sensitive to noise by introducing effects of neighboring pixels. Experiments conducted on artificial images and synthetic and real clinical Brain MRI show that the proposed method is effective and obtains better results of both bias field correction and segmentation than comparing methods.
机译:模糊C型方式(FCM)是一种用于图像分割的流行聚类方法。然而,FCM在脑磁共振成像(MRI)中处理伪影具有困难,特别是当涉及偏置场和噪声时。我们提出了一种新的多表面近似的FCM,具有间隔隶属方法,用于同时偏压校正和脑MRI的分割。首先,偏置字段的多个表面表示嵌入到FCM中以估计和校正偏置字段。然后改进的FCM的成员资格延长到间隔。在延伸之后,通过所提出的方法可以更适当地解决不同先生脑组织的聚类中心。此外,通过引入相邻像素的效果,所提出的方法对噪声不太敏感。在人造图像和合成和实际临床脑MRI上进行的实验表明,该方法是有效的,并比比较方法获得偏置场校正和分段的更好结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号