首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy General Linear Modeling for Functional Magnetic Resonance Imaging Analysis
【24h】

Fuzzy General Linear Modeling for Functional Magnetic Resonance Imaging Analysis

机译:功能磁共振成像分析模糊通用线性建模

获取原文
获取原文并翻译 | 示例

摘要

Functional magnetic resonance imaging (fMRI) is a key neuroimaging technique. The classic fMRI analysis pipeline is based on the assumption that the hemodynamic response (HR) is the same across brain regions, time, and subjects. Although convenient, there is ample evidence that this assumption does not hold, and that these differences result in inaccuracies in brain activity detection. This article presents a new fMRI processing pipeline that captures the intrinsic intra- and intersubject variability of the HR. At the core of this new pipeline is the definition of a fuzzy hemodynamic response function (HRF). The proposed pipeline includes a new fuzzy general linear model (GLM) able to handle the fuzzy HRF, including a practical realization based on the LR representation of fuzzy numbers. This article also describes how to obtain activation maps from the fuzzy GLM, and a methodology to compute the statistical power of the analysis. The method is evaluated in synthetic and real fMRI data and compared with other state-of-the-art techniques. The experiments based on synthetic data show that the fuzzy GLM approach is more robust under uncertainty regarding the true specific shape of the HR. The experiments based on the real data show an increased volume of the activated brain areas, suggesting that the proposed method is able to prevent false negative errors in the boundaries of target brain regions in which HR should be negligible.
机译:功能磁共振成像(FMRI)是一种关键的神经影像技术。经典的FMRI分析管道基于假设血液动力学响应(HR)在脑区域,时间和受试者跨大脑区域。虽然方便,但有充分的证据表明这种假设不持有,并且这些差异导致大脑活动检测中的不准确性。本文介绍了一个新的FMRI处理管道,捕获HR的内在和主机的内在内部可变性。在这个新的管道的核心,是模糊血液动力学响应函数(HRF)的定义。所提出的管道包括一种能够处理模糊HRF的新模糊通用线性模型(GLM),包括基于模糊数的LR表示的实际实现。本文还介绍了如何从模糊GLM获取激活映射,以及计算分析统计功率的方法。该方法是在合成和真实的FMRI数据中评估的,并与其他最先进的技术进行比较。基于合成数据的实验表明,在对人力资源真实形状的不确定度下,模糊GLM方法更加稳健。基于真实数据的实验显示了激活的大脑区域的增加量,表明该方法能够防止目标脑区域的边界中的假阴性误差,其中HR应该可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号