首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Semisupervised Approach to Surrogate-Assisted Multiobjective Kernel Intuitionistic Fuzzy Clustering Algorithm for Color Image Segmentation
【24h】

Semisupervised Approach to Surrogate-Assisted Multiobjective Kernel Intuitionistic Fuzzy Clustering Algorithm for Color Image Segmentation

机译:用于彩色图像分割的代理辅助多目标内核直觉模糊群体模糊群体的半质化方法

获取原文
获取原文并翻译 | 示例

摘要

Multiobjective evolutionary algorithms (MOEAs) are effective optimization methods. To improve the segmentation performance and time efficiency of MOEAs-based fuzzy clustering algorithms for color images, a semisupervised surrogate-assisted multiobjective kernel intuitionistic fuzzy clustering ((SMKIFC)-M-3) algorithm is proposed in this article. The main contributions of (SMKIFC)-M-3 can be summarized as follows: 1) semisupervised kernel intuitionistic fuzzy objective functions are constructed for optimization to search satisfactory segmentation results; 2) to reduce the computational cost, the Kriging model is used to predict the values of objective functions instead of directly calculating the expensive objective functions; 3) a semisupervised selection strategy and a semisupervised model management mechanism are proposed to balance the convergence and diversity and improve the predicted accuracy of the Kriging model, respectively; and 4) a novel semisupervised kernel intuitionistic fuzzy cluster validity index is defined to select the optimal solution from the final nondominated solution set. Experimental results on two color image libraries demonstrate that (SMKIFC)-M-3 outperforms state-of-the-art methods in segmentation performance and meanwhile possesses a low time cost.
机译:多目标进化算法(MOEAS)是有效的优化方法。为了提高基于Moas的模糊聚类算法的分割性能和时间效率,用于彩色图像,在本文中提出了一种半验证的代理辅助多目标内核直觉((SMKIFC)-M-3)算法。 (SMKIFC)-M-3的主要贡献可归纳如下:1)模拟内核直觉模糊客观函数用于优化以搜索满意的分割结果; 2)为了降低计算成本,Kriging模型用于预测目标功能的值,而不是直接计算昂贵的客观函数; 3)提出了半化选择策略和半质化模型管理机制,以平衡收敛和多样性,并分别提高Kriging模型的预测准确性; 4)采用新型半熟的内核直觉模糊集群有效性索引,以从最终NondoMinated解决方案集中选择最佳解决方案。两种彩色图像库上的实验结果表明(SMKIFC)-M-3优于分割性能的最先进方法,同时具有低时间成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号