首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiclass Fuzzy Time-Delay Common Spatio-Spectral Patterns With Fuzzy Information Theoretic Optimization for EEG-Based Regression Problems in Brain–Computer Interface (BCI)
【24h】

Multiclass Fuzzy Time-Delay Common Spatio-Spectral Patterns With Fuzzy Information Theoretic Optimization for EEG-Based Regression Problems in Brain–Computer Interface (BCI)

机译:基于脑电接口(BCI)中基于EEG的回归问题的具有模糊信息理论优化的多类模糊时延公共时空谱模式

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalogram (EEG) signals are one of the most widely used noninvasive signals in braincomputer interfaces. Large dimensional EEG recordings suffer from poor signal-to-noise ratio. These signals are very much prone to artifacts and noise, so sufficient preprocessing is done on raw EEG signals before using them for classification or regression. Properly selected spatial filters enhance the signal quality and subsequently improve the rate and accuracy of classifiers, but their applicability to solve regression problems is quite an unexplored objective. This paper extends common spatial patterns (CSP) to EEG state space using fuzzy time delay and thereby proposes a novel approach for spatial filtering. The approach also employs a novel fuzzy information theoretic framework for filter selection. Experimental performance on EEG-based reaction time (RT) prediction from a lane-keeping task data from 12 subjects demonstrated that the proposed spatial filters can significantly increase the EEG signal quality. A comparison based on root-mean-squared error (RMSE), mean absolute percentage error (MAPE), and correlation to true responses is made for all the subjects. In comparison to the baseline fuzzy CSP regression one versus rest, the proposed Fuzzy Time-delay Common Spatio-Spectral filters reduced the RMSE on an average by $ext{9.94}%$, increased the correlation to true RT on an average by $ext{7.38}%$, and reduced the MAPE by $ext{7.09}%$.
机译:脑电图(EEG)信号是脑机接口中使用最广泛的非侵入性信号之一。大尺寸脑电图记录的信噪比很差。这些信号极容易出现伪影和噪声,因此在将原始EEG信号用于分类或回归之前,需要对它们进行足够的预处理。适当选择的空间滤波器可以提高信号质量,并随后提高分类器的速率和准确性,但是其解决回归问题的适用性是一个尚未探索的目标。本文利用模糊时延将公共空间模式(CSP)扩展到脑电图状态空间,从而提出了一种新颖的空间滤波方法。该方法还采用了新颖的模糊信息理论框架来进行滤波器选择。根据来自12位受试者的车道保持任务数据进行的基于EEG的反应时间(RT)预测的实验性能表明,提出的空间滤波器可以显着提高EEG信号质量。对所有受试者进行基于均方根误差(RMSE),平均绝对百分比误差(MAPE)以及与真实反应的相关性的比较。相较于基线模糊CSP回归一与休息,拟议的模糊时间延迟公共时空频谱滤波器平均将RMSE降低了$ text {9.94} %$,将与真实RT的相关性平均提高了$ text {7.38} %$,并将MAPE降低$ text {7.09} %$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号