首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems
【24h】

Cooperative Artificial Bee Colony Algorithm With Multiple Populations for Interval Multiobjective Optimization Problems

机译:区间多目标优化问题的多种群合作人工蜂群算法

获取原文
获取原文并翻译 | 示例

摘要

In practical engineering optimization problems (such as risk assessments), the parameters of the objective functions can be intervals because of noise and uncertainty; however, such problems cannot be solved by traditional multiobjective optimization methods. Yet, very little study has addressed interval multiobjective optimization methods compared to traditional multiobjective optimization methods. Therefore, a novel interval multiobjective optimization method called the Interval Cooperative Multiobjective Artificial Bee Colony Algorithm (ICMOABC) based on multiple populations for multiple objectives and interval credibility is proposed. Interval credibility is selected as the interval dominant method. Interval credibility is easy to combine with multiobjective optimization methods because it can describe the mean and width of intervals without increasing the dimension of the objective functions. The proposed algorithm has M single-objective optimization subpopulations updated by artificial bee colony algorithm, meaning it uses evolutionary resources more efficiently. In order to bring in diversity, the elitist learning strategy is used in the archive. The results of ICMOABC on various benchmark problems sets with different characteristics demonstrate its superior performance compared to some state-of-the-art algorithms.
机译:在实际的工程优化问题(例如风险评估)中,由于噪声和不确定性,目标函数的参数可能是间隔。但是,传统的多目标优化方法无法解决这些问题。然而,与传统的多目标优化方法相比,很少有研究针对区间多目标优化方法。因此,提出了一种基于多种群,多目标和区间可信度的区间合作多目标人工蜂群算法(ICMOABC)。选择区间可信度作为区间优势方法。区间可信度易于与多目标优化方法结合,因为它可以描述区间的均值和宽度,而无需增加目标函数的维数。该算法具有由人工蜂群算法更新的M个单目标优化子种群,这意味着它可以更有效地利用进化资源。为了带来多样性,存档中使用了精英学习策略。与某些最新算法相比,ICMOABC在具有不同特征的各种基准问题集上的结果证明了其卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号