首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Space Efficient Minimum Spanning Tree Approach to the Fuzzy Joint Points Clustering Algorithm
【24h】

A Space Efficient Minimum Spanning Tree Approach to the Fuzzy Joint Points Clustering Algorithm

机译:一种空间有效的最小生成树方法的模糊联合点聚类算法

获取原文
获取原文并翻译 | 示例

摘要

The fuzzy joint points (FJPs) method is a neighborhood-based clustering method that uses a fuzzy neighborhood relation and eliminates the need for a parameter. Even though the fuzzy neighborhood-based clustering methods are proven to be fast enough, such that tens of thousands of data can be handled under a second, the space complexity is still a limiting factor. In this study, a minimum spanning tree based reduced space FJP algorithm is proposed. The computational experiments show that the reduced space algorithm enables the method to be used for much larger data sets.
机译:模糊关节点(FJPs)方法是一种基于邻域的聚类方法,它使用模糊邻域关系并消除了对参数的需求。尽管事实证明基于模糊邻域的聚类方法足够快,可以在一秒钟内处理成千上万的数据,但是空间复杂度仍然是一个限制因素。在这项研究中,提出了一种基于最小生成树的缩减空间FJP算法。计算实验表明,减少空间算法使该方法可用于更大的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号