首页> 外文期刊>IEEE Transactions on Fuzzy Systems >General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model
【24h】

General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model

机译:通用2型径向基函数神经网络:数据驱动的模糊模型

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new General Type-2 Radial Basis Function Neural Network (GT2-RBFNN) that is functionally equivalent to a GT2 Fuzzy Logic System (FLS) of either Takagi-Sugeno- Kang (TSK) or Mamdani type. The neural structure of the GT2-RBFNN is based on the alpha-planes representation, in which the antecedent and consequent part of each fuzzy rule uses GT2 Fuzzy Sets (FSs). To reduce the iterative nature of the Karnik-Mendel algorithm, the Enhaned-Karnik-Mendel (EKM) type-reduction and three popular direct-defuzzification methods, namely the 1) Nie-Tan approach (NT), the 2) Wu-Mendel uncertain bounds method (WU) and the 3) Biglarbegian-Melek-Mendel algorithm (BMM) are used. Hence, this paper provides four different architectures of the GT2-RBFNN and their parametric optimisation. Such optimisation is a two-stage methodology that first implements an Iterative Information Granulation (IIG) approach to estimate the antecedent parameters of each fuzzy rule. Secondly, each consequent part and the fuzzy rule base of the GT2-RBFNN is optimised using an Adaptive Gradient Descent method (AGD) respectively. A number of popular benchmark data sets, the identification of a nonlinear system and the prediction of chaotic time series are considered. The reported comparative analysis of experimental results is used to evaluate the performance of the suggested GT2 RBFNN with respect to other popular methodologies.
机译:本文提出了一种新的通用2型径向基函数神经网络(GT2-RBFNN),其功能等同于Takagi-Sugeno-Kang(TSK)或Mamdani类型的GT2模糊逻辑系统(FLS)。 GT2-RBFNN的神经结构基于alpha平面表示,其中每个模糊规则的前因和后继部分使用GT2模糊集(FSs)。为了减少Karnik-Mendel算法的迭代性质,Enhaned-Karnik-Mendel(EKM)归约和三种流行的直接反模糊化方法,即1)Nie-Tan方法(NT),2)Wu-Mendel不确定边界法(WU)和3)使用Biglarbegian-Melek-Mendel算法(BMM)。因此,本文提供了GT2-RBFNN的四种不同架构及其参数优化。这种优化是一个两阶段方法,该方法首先实现迭代信息粒度(IIG)方法来估计每个模糊规则的先行参数。其次,分别使用自适应梯度下降法(AGD)对GT2-RBFNN的每个后续部分和模糊规则库进行优化。考虑了许多流行的基准数据集,非线性系统的识别以及混沌时间序列的预测。报告的实验结果比较分析用于评估建议的GT2 RBFNN相对于其他流行方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号