首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Interval Type-2 Radial Basis Function Neural Network: A Modeling Framework
【24h】

Interval Type-2 Radial Basis Function Neural Network: A Modeling Framework

机译:区间2型径向基函数神经网络:建模框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an interval type-2 radial basis function neural network (IT2-RBF-NN) is proposed as a new modeling framework. We take advantage of the functional equivalence of radial basis function neural networks (RBF-NNs) to a class of type-1 fuzzy logic systems (T1-FLS) to propose a new interval type-2 equivalent system; it is systematically shown that the type equivalence (between RBF and FLS) of the new modeling structure is maintained in the case of the IT2 system. The new IT2-RBF-NN incorporates interval type-2 fuzzy sets within the radial basis function layer of the neural network in order to account for linguistic uncertainty in the system's variables. The antecedent part in each rule in the IT2-RBF-NN is an interval type-2 fuzzy set, and the consequent part is of Mamdani type with interval weights, which are used for the Karnik and Mendel type-reduction process in the output layer of the network. The structural and parametric optimization of the IT2-RBF-NN parameters is carried out by a hybrid approach that is based on estimating the initial rule base and footprint of uncertainty (FOU) directly via a granular computing approach and an adaptive back propagation approach. The effectiveness of the new modeling framework is assessed in two parts. First, the IT2-RBF-NN is tested against a number of popular benchmark datasets, and second, it is demonstrated in a real-world industrial application that has particular challenges that are related to the uncertainty of the raw information. Via simulation results, it is shown that the proposed modeling framework performs well as compared with its T1 equivalent system. In addition, a very good computational efficiency is demonstrated as a result of the systematic and automatic creation of IT2 linguistic information and the FOU. Crucially, the proposed modeling framework opens up a host of opportunities for the academic community that already uses the popular T1-RBF-NN-based structure to try the new IT2-RBF-NN - nd take advantage of the numerous existing RBF-based adaptive learning algorithms, RBF-based multiobjective optimization techniques, granular computing-based information capture techniques, and real-world FLS implementations, and, in general, take advantage of the computational efficiency of the fusion of IT2-FLS and RBF-NN.
机译:本文提出了一种区间2型径向基函数神经网络(IT2-RBF-NN)作为新的建模框架。我们利用径向基函数神经网络(RBF-NNs)的功能等价于一类1型模糊逻辑系统(T1-FLS),提出了一种新的区间2型等效系统。系统地表明,在IT2系统的情况下,新建模结构的类型等效性(在RBF和FLS之间)得以保持。新的IT2-RBF-NN在神经网络的径向基函数层内合并了间隔类型2模糊集,以便解决系统变量中的语言不确定性。 IT2-RBF-NN中每个规则的前一部分是区间2型模糊集,其后部分是具有区间权重的Mamdani类型,用于输出层中的Karnik和Mendel类型归约过程网络。 IT2-RBF-NN参数的结构和参数优化是通过一种混合方法进行的,该方法基于直接通过粒度计算方法和自适应反向传播方法估算初始规则库和不确定性足迹(FOU)。新模型框架的有效性分为两个部分。首先,针对大量流行的基准数据集对IT2-RBF-NN进行了测试,其次,它在实际工业应用中得到了证明,该应用面临与原始信息的不确定性相关的特殊挑战。通过仿真结果表明,所提出的建模框架与其T1等效系统相比性能良好。此外,由于系统地自动创建了IT2语言信息和FOU,因此显示出非常好的计算效率。至关重要的是,提出的建模框架为已经使用流行的基于T1-RBF-NN的结构来尝试新的IT2-RBF-NN的学术界提供了许多机会-并利用了许多现有的基于RBF的自适应学习算法,基于RBF的多目标优化技术,基于粒度计算的信息捕获技术以及实际的FLS实现,并且通常利用IT2-FLS和RBF-NN融合的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号