首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human–Robot Interaction
【24h】

Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human–Robot Interaction

机译:人机交互中情感意图理解的三层加权模糊支持向量回归

获取原文
获取原文并翻译 | 示例

摘要

A three-layer weighted fuzzy support vector regression (TLWFSVR) model is proposed for understanding human intention, and it is based on the emotion-identification information in human-robot interaction. The TLWFSVR model consists of three layers, including adjusted weighted kernel fuzzy c-means for data clustering, fuzzy support vector regressions (FSVR) for information understanding, and weighted fusion for intention understanding. It aims to guarantee the quick convergence and satisfactory performance of the local FSVR via adjusting the weights of each feature in each cluster, in such a way that importance of different emotion-identification information is represented. Moreover, smooth human-oriented interaction can be obtained by endowing robot with human intention understanding capability. Experimental results show that the proposed TLWFSVR model obtains higher intention understanding accuracy and less computational time than that of two-layer fuzzy support vector regression, support vector regression, and back propagation neural network (BPNN), respectively. Additionally, the preliminary application experiments are performed in the developing human-robot interaction system, called emotional social robot system, where 12 volunteers and 2 mobile robots experience a scenario of “drinking at a bar.” Application results indicate that the bartender robot is able to understand customers' order intentions.
机译:提出了一种三层加权模糊支持向量回归(TLWFSVR)模型,用于基于人机交互中的情感识别信息来理解人的意图。 TLWFSVR模型由三层组成,包括用于数据聚类的调整后加权核模糊c均值,用于信息理解的模糊支持向量回归(FSVR)和用于意图理解的加权融合。它旨在通过调整每个聚类中每个特征的权重,以确保表示不同情感识别信息的重要性,来确保本地FSVR的快速收敛和令人满意的性能。而且,通过赋予机器人具有人的意图理解能力,可以实现顺畅的以人为本的交互。实验结果表明,所提出的TLWFSVR模型分别比两层模糊支持向量回归,支持向量回归和反向传播神经网络(BPNN)具有更高的意图理解精度和更少的计算时间。此外,在正在开发的人机交互系统(称为情感社交机器人系统)中进行了初步的应用实验,其中12名志愿者和2名移动机器人体验了“在酒吧喝酒”的情况。应用结果表明,酒保机器人能够理解顾客的订购意图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号