首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Design of Granular Takagi–Sugeno Fuzzy Model Through the Synergy of Fuzzy Subspace Clustering and Optimal Allocation of Information Granularity
【24h】

A Design of Granular Takagi–Sugeno Fuzzy Model Through the Synergy of Fuzzy Subspace Clustering and Optimal Allocation of Information Granularity

机译:通过模糊子空间聚类和信息粒度的最优分配的协同作用,设计颗粒状的Takagi-Sugeno模糊模型

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy models have been commonly used in system modeling and model-based control. Among various fuzzy models, Takagi-Sugeno (TS) fuzzy models form one of the intensively studied and applied categories of models. In this study, we are concerned with a development of a granular TS fuzzy model realized on a basis of numerical evidence and completed through a combination of fuzzy subspace clustering and the principle of optimal allocation of information granularity. The TS fuzzy models are built with the use of the fuzzy subspace clustering algorithm. Information granularity is regarded as a crucial design asset whose optimal allocation gives rise to granular fuzzy models and makes the constructed models to become better in rapport with experimental data. In comparison with fuzzy models, granular fuzzy models produce results (outputs) that are information granules rather than numeric entities being encountered in fuzzy models. In contrast with the commonly used optimization criteria, which emphasize the highest accuracy encountered at the numeric level, the performance of the granular TS fuzzy model is quantified in terms of the coverage and specificity criteria where such criteria are of interest in the evaluation of quality of information granules vis-à-vis experimental (numeric) data. Experimental results are reported for both synthetic datasets and publicly available data sets coming from the UCI machine learning repository.
机译:模糊模型已普遍用于系统建模和基于模型的控制中。在各种模糊模型中,Takagi-Sugeno(TS)模糊模型构成了模型研究和应用领域之一。在这项研究中,我们关注的是基于数值证据实现并通过结合模糊子空间聚类和信息粒度的最佳分配原理完成的粒度TS模糊模型的开发。 TS模糊模型是使用模糊子空间聚类算法构建的。信息粒度被认为是一项至关重要的设计资产,它的最佳分配产生了粒度模糊模型,并使构建的模型在与实验数据的融合中变得更好。与模糊模型相比,粒状模糊模型产生的结果(输出)是信息颗粒,而不是模糊模型中遇到的数字实体。与通常强调数值级别最高准确性的常用优化标准相比,粒状TS模糊模型的性能是根据覆盖率和特异性标准进行量化的,而这些标准是评估质量的关键相对于实验(数值)数据的信息颗粒。报告了来自UCI机器学习存储库的合成数据集和可公开获得的数据集的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号