首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy-Model-Based Nonfragile Control for Nonlinear Singularly Perturbed Systems With Semi-Markov Jump Parameters
【24h】

Fuzzy-Model-Based Nonfragile Control for Nonlinear Singularly Perturbed Systems With Semi-Markov Jump Parameters

机译:具有半马尔可夫跳跃参数的非线性奇摄动系统的基于模糊模型的非脆弱控制

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the fuzzy-model-based nonfragile control problem for discrete-time nonlinear singularly perturbed systems with stochastic jumping parameters. The stochastic parameters are generated from the semi-Markov process. The memory property of the transition probabilities among subsystems is fully considered in the investigated systems. Consequently, the restriction that the transition probabilities are memoryless in widely used discrete-time Markov jump model can be removed. Based on the T-S fuzzy model approach and semi-Markov kernel concept, several criteria ensuring$delta$-error mean square stability of the underlying closed-loop system are established. With the help of those criteria, the designed procedures which could well deal with the fragility problem in the implementation of the proposed fuzzy-model-based controller are presented. A technique is developed to estimate the permissible maximum value of singularly perturbed parameter for discrete-time nonlinear semi-Markov jump singularly perturbed systems. Finally, the validity of the established theoretical results is illustrated by a numerical example and a modified tunnel diode circuit model.
机译:本文涉及具有随机跳跃参数的离散时间非线性奇摄动系统的基于模糊模型的非脆弱控制问题。随机参数是从半马尔可夫过程生成的。在研究的系统中,子系统之间的转移概率的存储特性得到了充分考虑。因此,可以消除在广泛使用的离散时间马尔可夫跳跃模型中转移概率无记忆的限制。基于TS模糊模型方法和半马尔可夫内核概念,确保 n $ delta $ n-建立了基本闭环系统的误差均方稳定性。借助这些标准,提出了可以很好地解决所提出的基于模糊模型的控制器实现中的脆弱性问题的设计过程。开发了一种技术来估计离散时间非线性半马氏跳奇异摄动系统的奇异摄动参数的允许最大值。最后,通过数值算例和改进的隧道二极管电路模型说明了所建立理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号