首页> 外文期刊>IEEE transactions on evolutionary computation >Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
【24h】

Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach

机译:多目标进化算法:比较案例研究和强度帕累托方法

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EAs are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the strength Pareto EA (SPEA), that combines several features of previous multiobjective EAs in a unique manner. It is characterized by (a) storing nondominated solutions externally in a second, continuously updated population, (b) evaluating an individual's fitness dependent on the number of external nondominated points that dominate it, (c) preserving population diversity using the Pareto dominance relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EAs on the 0/1 knapsack problem.
机译:进化算法(EA)通常非常适合涉及多个通常相互冲突的目标的优化问题。自1985年以来,已经开发出了多种进化的多目标优化方法,这些方法能够在一次运行中同时搜索多个解决方案。然而,到目前为止,提出的几种不同方法的比较研究大多仍是定性的,并且通常仅限于几种方法。本文以扩展的0/1背包问题为基础,定量比较了四个多目标EA。此外,我们介绍了一种用于多准则优化的新进化方法,即强度帕累托EA(SPEA),该方法以独特的方式结合了以前的多目标EA的多个功能。它的特点是(a)在第二个连续更新的群体中外部存储非支配解,(b)根据支配它的外部非支配点的数量来评估一个人的适应度,(c)使用帕累托优势关系保留群体多样性, (d)合并聚类程序,以减少非支配集合而不破坏其特性。在两个人为问题以及一个较大的问题(数字硬件-软件多处理器系统的综合)上获得的原则验证结果表明,SPEA可以非常有效地从整个帕累托最优前沿进行采样并分布在权衡表面上生成解决方案。此外,在0/1背包问题上,SPEA明显优于其他四个多目标EA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号