首页> 外文期刊>IEEE transactions on evolutionary computation >Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation
【24h】

Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation

机译:动态多目标进化算法:基于自适应单元的秩和密度估计

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new evolutionary approach to multiobjective optimization problems - the dynamic multiobjective evolutionary algorithm (DMOEA). In DMOEA, a novel cell-based rank and density estimation strategy is proposed to efficiently compute dominance and diversity information when the population size varies dynamically. In addition, a population growing and declining strategies are designed to determine if an individual will survive or be eliminated based on some qualitative indicators. Meanwhile, an objective space compression strategy is devised to continuously refine the quality of the resulting Pareto front. By examining the selected performance metrics on three recently designed benchmark functions, DMOEA is found to be competitive with or even superior to five state-of-the-art MOEAs in terms of maintaining the diversity of the individuals along the tradeoff surface, tending to extend the Pareto front to new areas, and finding a well-approximated Pareto optimal front. Moreover, DMOEA is evaluated by using different parameter settings on the chosen test functions to verify its robustness of converging to an optimal population size, if it exists. Simulations show that DMOEA has the potential of autonomously determining the optimal population size, which is found insensitive to the initial population size chosen.
机译:本文提出了一种解决多目标优化问题的新的进化方法-动态多目标进化算法(DMOEA)。在DMOEA中,提出了一种新颖的基于单元格的等级和密度估计策略,以在人口规模动态变化时有效地计算优势和多样性信息。此外,根据一些定性指标,设计了人口增长和下降的策略来确定一个人将生存还是被淘汰。同时,设计了一种客观的空间压缩策略,以不断完善生成的帕累托阵线的质量。通过在最近设计的三个基准功能上检查选定的绩效指标,发现DMOEA在维持权衡面的个体多样性方面与五个最新的MOEA具有竞争性甚至优于五个MOEA。将Pareto前沿转移到新区域,并找到一个近似的Pareto最优前沿。此外,通过在所选测试功能上使用不同的参数设置来评估DMOEA,以验证其收敛于最佳总体规模(如果存在)的鲁棒性。模拟表明,DMOEA具有自主确定最佳人口规模的潜力,这被发现对所选的初始人口规模不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号