首页> 外文期刊>IEEE transactions on evolutionary computation >Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling
【24h】

Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling

机译:多目标置换流水车间调度的模因算法中遗传搜索与局部搜索的平衡

获取原文

摘要

This paper shows how the performance of evolutionary multiobjective optimization (EMO) algorithms can be improved by hybridization with local search. The main positive effect of the hybridization is the improvement in the convergence speed to the Pareto front. On the other hand, the main negative effect is the increase in the computation time per generation. Thus, the number of generations is decreased when the available computation time is limited. As a result, the global search ability of EMO algorithms is not fully utilized. These positive and negative effects are examined by computational experiments on multiobjective permutation flowshop scheduling problems. Results of our computational experiments clearly show the importance of striking a balance between genetic search and local search. In this paper, we first modify our former multiobjective genetic local search (MOGLS) algorithm by choosing only good individuals as initial solutions for local search and assigning an appropriate local search direction to each initial solution. Next, we demonstrate the importance of striking a balance between genetic search and local search through computational experiments. Then we compare the modified MOGLS with recently developed EMO algorithms: the strength Pareto evolutionary algorithm and revised nondominated sorting genetic algorithm. Finally, we demonstrate that a local search can be easily combined with those EMO algorithms for designing multiobjective memetic algorithms.
机译:本文展示了如何通过与局部搜索混合来改进进化多目标优化(EMO)算法的性能。杂交的主要积极作用是提高了帕累托前沿的收敛速度。另一方面,主要的负面影响是每代计算时间的增加。因此,当可用的计算时间受到限制时,世代数减少了。结果,没有充分利用EMO算法的全局搜索能力。通过对多目标置换流水车间调度问题的计算实验,检验了这些正面和负面影响。我们的计算实验结果清楚地表明了在基因搜索和本地搜索之间取得平衡的重要性。在本文中,我们首先修改了以前的多目标遗传局部搜索(MOGLS)算法,方法是只选择好个体作为局部搜索的初始解,并为每个初始解分配适当的局部搜索方向。接下来,我们演示了通过计算实验在遗传搜索和局部搜索之间取得平衡的重要性。然后,我们将修改后的MOGLS与最新开发的EMO算法进行比较:强度帕累托进化算法和修改后的非支配排序遗传算法。最后,我们证明了本地搜索可以轻松地与那些EMO算法相结合来设计多目标模因算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号