首页> 外文期刊>Expert Systems with Application >An asynchronous genetic local search algorithm for the permutation flowshop scheduling problem with total flowtime minimization
【24h】

An asynchronous genetic local search algorithm for the permutation flowshop scheduling problem with total flowtime minimization

机译:总流时最小化的置换流水车间调度问题的异步遗传局部搜索算法

获取原文
获取原文并翻译 | 示例

摘要

In this study, the permutation flowshop scheduling problem with the total flowtime criterion is considered. An asynchronous genetic local search algorithm (AGA) is proposed to deal with this problem. The AGA consists of three phases. In the first phase, an individual in the initial population is yielded by an effective constructive heuristic and the others are randomly generated, while in the second phase all pairs of individuals perform the asynchronous evolution (AE) where an enhanced variable neighborhood search (E-VNS) as well as a simple crossover operator is used. A restart mechanism is applied in the last phase. Our experimental results show that the algorithm proposed outperforms several state-of-the-art methods and two recently proposed meta-heuristics in both solution quality and computation time. Moreover, for 120 benchmark instances, AGA obtains 118 best solutions reported in the literature and 83 of which are newly improved.
机译:在这项研究中,考虑了具有总流动时间准则的置换流水车间调度问题。提出了一种异步遗传局部搜索算法(AGA)来解决这个问题。 AGA由三个阶段组成。在第一阶段,初始种群中的一个个体通过有效的构造启发式方法产生,而其他个体则是随机生成的,而在第二阶段,所有个体对都执行异步进化(AE),其中增强了变量邻域搜索(E- VNS)以及简单的交叉运算符。在最后阶段应用了重启机制。我们的实验结果表明,该算法在解决方案质量和计算时间方面均优于几种最新方法和两种近期提出的元启发式算法。此外,对于120个基准实例,AGA获得了文献中报告的118个最佳解决方案,其中83个是最新改进的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号