首页> 外文期刊>IEEE transactions on evolutionary computation >Evolutionary algorithms + domain knowledge = real-world evolutionary computation
【24h】

Evolutionary algorithms + domain knowledge = real-world evolutionary computation

机译:进化算法+领域知识=真实世界的进化计算

获取原文
获取原文并翻译 | 示例

摘要

We discuss implicit and explicit knowledge representation mechanisms for evolutionary algorithms (EAs). We also describe offline and online metaheuristics as examples of explicit methods to leverage this knowledge. We illustrate the benefits of this approach with four real-world applications. The first application is automated insurance underwriting-a discrete classification problem, which requires a careful tradeoff between the percentage of insurance applications handled by the classifier and its classification accuracy. The second application is flexible design and manufacturing-a combinatorial assignment problem, where we optimize design and manufacturing assignments with respect to time and cost of design and manufacturing for a given product. Both problems use metaheuristics as a way to encode domain knowledge. In the first application, the EA is used at the metalevel, while in the second application, the EA is the object-level problem solver. In both cases, the EAs use a single-valued fitness function that represents the required tradeoffs. The third application is a lamp spectrum optimization that is formulated as a multiobjective optimization problem. Using domain customized mutation operators, we obtain a well-sampled Pareto front showing all the nondominated solutions. The fourth application describes a scheduling problem for the maintenance tasks of a constellation of 25 low earth orbit satellites. The domain knowledge in this application is embedded in the design of a structured chromosome, a collection of time-value transformations to reflect static constraints, and a time-dependent penalty function to prevent schedule collisions.
机译:我们讨论了进化算法(EA)的隐式和显式知识表示机制。我们还将离线和在线元启发式方法描述为利用此知识的显式方法的示例。我们用四个实际应用程序说明了这种方法的好处。第一个应用是自动保险承保-一个离散的分类问题,它需要在分类器处理的保险申请的百分比与其分类准确性之间进行仔细权衡。第二个应用是灵活的设计和制造-一个组合分配问题,在该问题中,我们针对给定产品的设计和制造时间和成本优化了设计和制造分配。这两个问题都使用元启发法来编码领域知识。在第一个应用程序中,EA在元级别上使用,而在第二个应用程序中,EA是对象级问题解决者。在这两种情况下,EA均使用代表所需权衡的单值适应度函数。第三个应用是灯谱优化,它被表述为多目标优化问题。使用域定制的变异算子,我们获得了采样良好的Pareto前沿,显示了所有非支配解。第四申请描述了用于25个低地球轨道卫星的星座的维护任务的调度问题。此应用程序中的领域知识嵌入到结构化染色体的设计中,以反映静态约束的时间-值转换的集合,以及防止时间表冲突的时间相关惩罚函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号