首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation
【24h】

Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation

机译:停滞期间粒子群优化器采样分布的均值和方差

获取原文
获取原文并翻译 | 示例

摘要

Several theoretical analyses of the dynamics of particle swarms have been offered in the literature over the last decade. Virtually all rely on substantial simplifications, often including the assumption that the particles are deterministic. This has prevented the exact characterization of the sampling distribution of the particle swarm optimizer (PSO). In this paper we introduce a novel method that allows us to exactly determine all the characteristics of a PSO sampling distribution and explain how it changes over any number of generations, in the presence stochasticity. The only assumption we make is stagnation, i.e., we study the sampling distribution produced by particles in search for a better personal best. We apply the analysis to the PSO with inertia weight, but the analysis is also valid for the PSO with constriction and other forms of PSO.
机译:在过去的十年中,文献中对粒子群的动力学进行了几种理论分析。实际上,所有方法都依赖于实质性的简化,通常包括假设粒子是确定性的。这阻止了粒子群优化器(PSO)采样分布的精确表征。在本文中,我们介绍了一种新颖的方法,该方法可让我们准确地确定PSO采样分布的所有特征,并说明在存在随机性的情况下PSO会在任何数量的世代中如何变化。我们做出的唯一假设是停滞,即我们研究粒子产生的采样分布以寻求更好的个人最佳状态。我们将分析应用于具有惯性权重的PSO,但该分析对于具有收缩和其他形式PSO的PSO也有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号