首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Multi Population Pattern Searching Algorithm: A New Evolutionary Method Based on the Idea of Messy Genetic Algorithm
【24h】

Multi Population Pattern Searching Algorithm: A New Evolutionary Method Based on the Idea of Messy Genetic Algorithm

机译:多人口模式搜索算法:一种基于杂乱遗传算法思想的进化新方法

获取原文
获取原文并翻译 | 示例

摘要

One of the main evolutionary algorithms bottlenecks is the significant effectiveness dropdown caused by increasing number of genes necessary for coding the problem solution. In this paper, we present a multi population pattern searching algorithm (MuPPetS), which is supposed to be an answer to situations where long coded individuals are a must. MuPPetS uses some of the messy GA ideas like coding and operators. The presented algorithm uses the binary coding, however the objective is to use MuPPetS against real-life problems, whatever coding schema. The main novelty in the proposed algorithm is a gene pattern idea based on retrieving, and using knowledge of gene groups which contains genes highly dependent on each other. Thanks to gene patterns the effectiveness of data exchange between population individuals improves, and the algorithm gains new, interesting, and beneficial features like a kind of “selective attention” effect.
机译:进化算法的主要瓶颈之一是有效编码的下降,这是由于编码问题解决方案所需的基因数目增加而引起的。在本文中,我们提出了一种多人口模式搜索算法(MuPPetS),该算法应该可以解决必须使用长编码个体的情况。 MuPPetS使用了一些凌乱的GA思想,例如编码和运算符。提出的算法使用二进制编码,但是目标是使用MuPPetS来解决现实生活中的问题,无论采用哪种编码方案。所提出算法的主要新颖之处在于基于检索的基因模式构想,并利用了包含彼此高度依赖的基因的基因组知识。多亏了基因模式,人口个体之间数据交换的效率得以提高,并且该算法获得了新的,有趣的和有益的功能,例如一种“选择性注意”效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号