首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators
【24h】

Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators

机译:利用基于邻近的变异算子增强差分进化

获取原文
获取原文并翻译 | 示例

摘要

Differential evolution is a very popular optimization algorithm and considerable research has been devoted to the development of efficient search operators. Motivated by the different manner in which various search operators behave, we propose a novel framework based on the proximity characteristics among the individual solutions as they evolve. Our framework incorporates information of neighboring individuals, in an attempt to efficiently guide the evolution of the population toward the global optimum, without sacrificing the search capabilities of the algorithm. More specifically, the random selection of parents during mutation is modified, by assigning to each individual a probability of selection that is inversely proportional to its distance from the mutated individual. The proposed framework can be applied to any mutation strategy with minimal changes. In this paper, we incorporate this framework in the original differential evolution algorithm, as well as other recently proposed differential evolution variants. Through an extensive experimental study, we show that the proposed framework results in enhanced performance for the majority of the benchmark problems studied.
机译:差分进化是一种非常流行的优化算法,大量研究致力于开发高效的搜索算子。由于各种搜索运算符的行为方式不同,我们提出了一个新颖的框架,该框架基于各个解决方案发展过程中的邻近特征。我们的框架结合了邻近个体的信息,以试图有效地指导人口向全局最优方向发展,而不牺牲算法的搜索能力。更具体地,通过向每个个体分配选择概率,该选择概率与其在突变个体中的距离成反比,从而改变了在突变期间父母的随机选择。所提出的框架可以应用于具有最小变化的任何突变策略。在本文中,我们将此框架结合到原始的差分进化算法以及其他最近提出的差分进化变体中。通过广泛的实验研究,我们证明了所提出的框架可以提高大多数所研究基准问题的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号