首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Evolving Distributed Algorithms With Genetic Programming
【24h】

Evolving Distributed Algorithms With Genetic Programming

机译:遗传规划的分布式进化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we evaluate the applicability of genetic programming (GP) for the evolution of distributed algorithms. We carry out a large-scale experimental study in which we tackle three well-known problems from distributed computing with six different program representations. For this purpose, we first define a simulation environment in which phenomena such as asynchronous computation at changing speed and messages taking over each other, i.e., out-of-order message delivery, occur with high probability. Second, we define extensions and adaptations of established GP approaches (such as tree-based and linear GP) in order to make them suitable for representing distributed algorithms. Third, we introduce novel rule-based GP methods designed especially with the characteristic difficulties of evolving algorithms (such as epistasis) in mind. Based on our extensive experimental study of these approaches, we conclude that GP is indeed a viable method for evolving non-trivial, deterministic, non-approximative distributed algorithms. Furthermore, one of the two rule-based approaches is shown to exhibit superior performance in most of the tasks and thus can be considered as an interesting idea also for other problem domains.
机译:在本文中,我们评估了遗传规划(GP)在分布式算法发展中的适用性。我们进行了一项大规模的实验研究,以六个不同的程序表示形式解决了分布式计算中的三个众所周知的问题。为此,我们首先定义一个模拟环境,在该环境中,诸如以可变速度进行异步计算以及消息彼此接管(即消息传递混乱)的现象很可能发生。其次,我们定义已建立的GP方法(例如基于树的GP和线性GP)的扩展和适应,以使其适合于表示分布式算法。第三,我们介绍了新颖的基于规则的GP方法,该方法特别设计时考虑了不断发展的算法(例如上位性)的特征难题。根据我们对这些方法的广泛实验研究,我们得出结论,GP确实是发展非平凡,确定性,非近似分布式算法的可行方法。此外,两种基于规则的方法中的一种在大多数任务中表现出优异的性能,因此对于其他问题领域也可以认为是一个有趣的想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号