首页> 外文期刊>International journal of systems science >Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms
【24h】

Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

机译:基于并行和分布式遗传规划/多目标遗传算法的串联混合动力汽车内燃机控制

获取原文
获取原文并翻译 | 示例
           

摘要

This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.
机译:本文解决了在混合动力汽车动力总成中保持三相交流发电机的稳定整流直流输出的问题。串联混合式主动力源通常包括内燃机(IC),该内燃机驱动三相永磁发电机,该三相永磁发电机的输出被整流为DC。最近的发展是通过电子控制的节气门来控制发动机/发电机的组合。该系统可以表示为具有明显时间延迟的非线性系统。以前,发电机输出的电压控制已通过模型预测方法(例如Smith Smith预测器)实现。这些方法依赖于将精确的系统模型和时间延迟合并到控制算法中,从而导致实时控制器的计算复杂性增加,并且必然在某种程度上取决于模型的准确性。控制系统存在两个互补的性能目标。首先,将内燃机保持在最佳工作点;其次,为牵引驱动逆变器提供稳定的直流电源。这些目标的实现将直流链路上的暂态能量存储需求降到最低,从而减轻了重量和成本。这些目标意味着在外部负载干扰下以及工作条件和车速设定值的变化下,内燃机的恒速运行。为了实现这些目标并减少实现的复杂性,本文在Simulink建模环境中使用遗传编程方法设计了一种控制器,旨在为时滞系统获得一个相对简单的控制器,该控制器具有以下特点:不依赖于实时系统模型的实现或控制器中的时间延迟近似值。提出了一种利用Simulink库中大量现有控制块来自动发展最佳控制结构的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号