首页> 外文期刊>IEEE transactions on evolutionary computation >Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition
【24h】

Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition

机译:基于分解的多目标进化算法的带轮自适应算子选择

获取原文
获取原文并翻译 | 示例

摘要

Adaptive operator selection (AOS) is used to determine the application rates of different operators in an online manner based on their recent performances within an optimization process. This paper proposes a bandit-based AOS method, fitness-rate-rank-based multiarmed bandit (FRRMAB). In order to track the dynamics of the search process, it uses a sliding window to record the recent fitness improvement rates achieved by the operators, while employing a decaying mechanism to increase the selection probability of the best operator. Not much work has been done on AOS in multiobjective evolutionary computation since it is very difficult to measure the fitness improvements quantitatively in most Pareto-dominance-based multiobjective evolutionary algorithms. Multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Thus, it is natural and feasible to use AOS in MOEA/D. We investigate several important issues in using FRRMAB in MOEA/D. Our experimental results demonstrate that FRRMAB is robust and its operator selection is reasonable. Comparison experiments also indicate that FRRMAB can significantly improve the performance of MOEA/D.
机译:自适应算子选择(AOS)用于基于不同算子在优化过程中的最新性能以在线方式确定它们的应用率。本文提出了一种基于强盗的AOS方法,基于适应度等级的多臂强盗(FRRMAB)。为了跟踪搜索过程的动态,它使用滑动窗口来记录操作员最近的适应性改善率,同时使用衰减机制来增加最佳操作员的选择概率。由于在大多数基于Pareto优势的多目标进化算法中,定量测量适应性改进非常困难,因此在多目标进化计算中对AOS所做的工作还很少。基于分解的多目标进化算法(MOEA / D)将多目标优化问题分解为多个标量优化子问题,并同时对其进行优化。因此,在MOEA / D中使用AOS是自然而可行的。我们研究了在MOEA / D中使用FRRMAB的几个重要问题。我们的实验结果表明,FRRMAB是鲁棒的,并且其运算符的选择是合理的。比较实验还表明,FRRMAB可以显着提高MOEA / D的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号