首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Tikhonov Regularization as a Complexity Measure in Multiobjective Genetic Programming
【24h】

Tikhonov Regularization as a Complexity Measure in Multiobjective Genetic Programming

机译:Tikhonov正则化作为多目标遗传规划中的复杂性度量

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose the use of Tikhonov regularization in conjunction with node count as a general complexity measure in multiobjective genetic programming. We demonstrate that employing this general complexity yields mean squared test error measures over a range of regression problems, which are typically superior to those from conventional node count (but never statistically worse). We also analyze the reason that our new method outperforms the conventional complexity measure and conclude that it forms a decision mechanism that balances both syntactic and semantic information.
机译:在本文中,我们建议将Tikhonov正则化与节点数结合使用,作为多目标遗传规划中的一般复杂性度量。我们证明,采用这种一般复杂性可以得出一系列回归问题的均方检验误差度量,这些误差通常优于常规节点数(但从统计学上来说却没有)。我们还分析了我们的新方法优于常规复杂性度量的原因,并得出结论,该方法形成了一种兼顾语法和语义信息的决策机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号