首页> 外文期刊>IEEE transactions on evolutionary computation >Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach
【24h】

Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach

机译:缩放动态优化问题:分裂和征服方法

获取原文
获取原文并翻译 | 示例

摘要

Scalability is a crucial aspect of designing efficient algorithms. Despite their prevalence, large-scale dynamic optimization problems are not well studied in the literature. This paper is concerned with designing benchmarks and frameworks for the study of large-scale dynamic optimization problems. We start by a formal analysis of the moving peaks benchmark (MPB) and show its nonseparable nature irrespective of its number of peaks. We then propose a composite MPB suite with exploitable modularity covering a wide range of scalable partially separable functions suitable for the study of large-scale dynamic optimization problems. The benchmark exhibits modularity, heterogeneity, and imbalance features to resemble real-world problems. To deal with the intricacies of large-scale dynamic optimization problems, we propose a decomposition-based coevolutionary framework which breaks a large-scale dynamic optimization problem into a set of lower-dimensional components. A novel aspect of the framework is its efficient bi-level resource allocation mechanism which controls the budget assignment to components and the populations responsible for tracking multiple moving optima. Based on a comprehensive empirical study on a wide range of large-scale dynamic optimization problems with up to 200-D, we show the crucial role of problem decomposition and resource allocation in dealing with these problems. The experimental results clearly show the superiority of the proposed framework over three other approaches in solving large-scale dynamic optimization problems.
机译:可扩展性是设计高效算法的关键方面。尽管他们流行,但文献中没有很好地研究大规模的动态优化问题。本文涉及为大规模动态优化问题的研究设计基准和框架。我们首先对移动峰值基准(MPB)的正式分析,并显示其不可分割性的性质,而不管其峰值数量如何。然后,我们提出了一种复合MPB套件,具有可利用的模块化,涵盖适合于研究大规模动态优化问题的广泛可扩展的部分可分离功能。基准测试表现出模块化,异质性和不平衡特征,以类似于现实世界的问题。要处理大规模的动态优化问题的复杂性,我们提出了一种基于分解的共同框架,该框架将大规模的动态优化问题分解成一组低维组件。该框架的一个新颖方面是其有效的双级资源分配机制,它将预算分配控制到组件和负责跟踪多个移动OPTOMA的群体。基于全面的实证研究,达到200-D的广泛大规模动态优化问题,展示了问题分解和资源​​分配在处理这些问题的关键作用。实验结果清楚地显示了在解决大规模动态优化问题的其他方法中提出框架的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号