首页> 外文期刊>IEEE transactions on evolutionary computation >Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization
【24h】

Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization

机译:约束多目标优化的两档进化算法

获取原文
获取原文并翻译 | 示例

摘要

When solving constrained multiobjective optimization problems, an important issue is how to balance convergence, diversity, and feasibility simultaneously. To address this issue, this paper proposes a parameter-free constraint handling technique, a two-archive evolutionary algorithm, for constrained multiobjective optimization. It maintains two collaborative archives simultaneously: one, denoted as the convergence-oriented archive (CA), is the driving force to push the population toward the Pareto front; the other one, denoted as the diversity-oriented archive (DA), mainly tends to maintain the population diversity. In particular, to complement the behavior of the CA and provide as much diversified information as possible, the DA aims at exploring areas under-exploited by the CA including the infeasible regions. To leverage the complementary effects of both archives, we develop a restricted mating selection mechanism that adaptively chooses appropriate mating parents from them according to their evolution status. Comprehensive experiments on a series of benchmark problems and a real-world case study fully demonstrate the competitiveness of our proposed algorithm, in comparison to five state-of-the-art constrained evolutionary multiobjective optimizers.
机译:解决受约束的多目标优化问题时,重要问题是如何同时平衡收敛,多样性和可行性。为解决此问题,本文提出了一种无参数约束处理技术,一个双档向演化算法,用于约束多目标优化。它同时维护两个协作档案:一个,表示为导向的归档档案(CA),是推动人口向帕累托前部的驱动力;另一个,表示为定向分集的档案(DA),主要倾向于维持人口多样性。特别地,为了补充CA的行为并提供尽可能多的多样化信息,DA旨在探索包括可行区域的CA泄露的区域。为了利用两个档案的互补影响,我们开发了一个限制的交配选择机制,根据他们的演化状态,自适应地选择适当的交配父母。与五个最先进的渐进式多目标优化器相比,一系列基准问题和真实案例研究的一系列基准问题和真实案例研究完全证明了我们所提出的算法的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号