首页> 外文期刊>IEEE transactions on evolutionary computation >Low-Dimensional Euclidean Embedding for Visualization of Search Spaces in Combinatorial Optimization
【24h】

Low-Dimensional Euclidean Embedding for Visualization of Search Spaces in Combinatorial Optimization

机译:用于组合优化中搜索空间可视化的低维欧几里德

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for visualizing combinatorial search spaces named low-dimensional Euclidean embedding (LDEE). The proposed method transforms the original search space, such as a set of permutations or binary vectors, to R-k (with k = 2 or 3 in practice) while aiming to preserve spatial relationships existing in the original space. The LDEE method uses the t-distributed stochastic neighbor embedding (t-SNE) to transform solutions from the original search space to the Euclidean one. In this paper, it is mathematically shown that the assumptions underlying the t-SNE method are valid in the case of permutation spaces with the Mallows distribution. The same is true for other metric spaces provided that the distribution of points is assumed to be normal with respect to the adopted metric. The embedding obtained using t-SNE is further refined to ensure visual separation of individual solutions. The visualization obtained using the LDEE method can be used for analyzing the behavior of the population in a population-based metaheuristic, the working of the genetic operators, etc. Examples of visualizations obtained using this method for the four peaks problem, the firefighter problem, the knapsack problem, the quadratic assignment problem, and the traveling salesman problem are presented in this paper.
机译:本文提出了一种可视化名为低维欧几里德嵌入(LDEE)的组合搜索空间的方法。该方法将原始搜索空间(例如一组排列或二进制向量)转换为R-K(实际上具有k = 2或3),同时旨在保留在原始空间中存在的空间关系。 LDEE方法使用嵌入(T-SNE)的T分布式随机邻居将解决方案从原始搜索空间转换为欧几里德。在本文中,在数学上示出了T-SNE方法的底层的假设在具有毫瓦分布的置换空间的情况下是有效的。对于其他度量空间,相同的是,如果假设点的分布相对于所采用的度量是正常的。使用T-SNE获得的嵌入进一步精制以确保各种溶液的视觉分离。使用LDEE方法获得的可视化可用于分析在基于人群的成群质主义,遗传算子的工作中的人群的行为等。使用这种方法为四个峰值问题获得的可视化的例子,消防员问题,在本文中提出了背包问题,二次分配问题和旅行推销员问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号