首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >An Efficient Feature Selection Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming
【24h】

An Efficient Feature Selection Algorithm for Evolving Job Shop Scheduling Rules With Genetic Programming

机译:一种基于遗传规划的作业车间调度规则的高效特征选择算法

获取原文
获取原文并翻译 | 示例

摘要

Automated design of job shop scheduling rules using genetic programming as a hyper-heuristic is an emerging topic that has become more and more popular in recent years. For evolving dispatching rules, feature selection is an important issue for deciding the terminal set of genetic programming. There can be a large number of features, whose importance/relevance varies from one to another. It has been shown that using a promising feature subset can lead to a significant improvement over using all the features. However, the existing feature selection algorithm for job shop scheduling is too slow and inapplicable in practice. In this paper, we propose the first “practical” feature selection algorithm for job shop scheduling. Our contributions are twofold. First, we develop a Niching-based search framework for extracting a diverse set of good rules. Second, we reduce the complexity of fitness evaluation by using a surrogate model. As a result, the proposed feature selection algorithm is very efficient. The experimental studies show that it takes less than 10% of the training time of the standard genetic programming training process, and can obtain much better feature subsets than the entire feature set. Furthermore, it can find better feature subsets than the best-so-far feature subset.
机译:使用遗传编程作为一种超启发式技术来自动设计作业车间调度规则是一个新兴的话题,近年来越来越流行。对于不断发展的调度规则,特征选择是决定遗传编程终端集的重要问题。可能有许多功能,其重要性/相关性因一个而不同。已经表明,使用有前途的特征子集可以比使用所有特征带来重大改进。然而,现有的用于车间调度的特征选择算法太慢并且在实践中不适用。在本文中,我们提出了第一个“实用”的特征选择算法,用于作业车间调度。我们的贡献是双重的。首先,我们开发了一个基于Niching的搜索框架,用于提取各种良好规则。其次,我们通过使用代理模型来降低适应性评估的复杂性。结果,提出的特征选择算法非常有效。实验研究表明,它花费的时间少于标准基因编程训练过程的训练时间的10%,并且可以获得比整个特征集更好的特征子集。此外,与迄今为止最好的特征子集相比,它可以找到更好的特征子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号