首页> 外文期刊>IEEE transactions on evolutionary computation >A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem
【24h】

A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem

机译:进化规划中调度程序的遗传规划表示的计算研究

获取原文
获取原文并翻译 | 示例

摘要

Designing effective dispatching rules is an important factor for many manufacturing systems. However, this time-consuming process has been performed manually for a very long time. Recently, some machine learning approaches have been proposed to support this task. In this paper, we investigate the use of genetic programming for automatically discovering new dispatching rules for the single objective job shop scheduling problem (JSP). Different representations of the dispatching rules in the literature are newly proposed in this paper and are compared and analysed. Experimental results show that the representation that integrates system and machine attributes can improve the quality of the evolved rules. Analysis of the evolved rules also provides useful knowledge about how these rules can effectively solve JSP.
机译:设计有效的调度规则是许多制造系统的重要因素。但是,此耗时的过程已由人工执行了很长时间。最近,已经提出了一些机器学习方法来支持该任务。在本文中,我们研究了遗传规划在自动发现单目标车间作业调度问题(JSP)的新调度规则方面的应用。本文提出了文献中调度规则的不同表示形式,并对它们进行了比较和分析。实验结果表明,将系统和机器属性集成在一起的表示可以提高规则的质量。对演化规则的分析还提供了有关这些规则如何有效解决JSP的有用知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号