首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Model-Free Fault Detection and Isolation in Large-Scale Cyber-Physical Systems
【24h】

Model-Free Fault Detection and Isolation in Large-Scale Cyber-Physical Systems

机译:大型网络物理系统中的无模型故障检测与隔离

获取原文
获取原文并翻译 | 示例

摘要

Detecting and isolating faults in cyber-physical systems (CPSs), e.g., critical infrastructures, smart buildings/cities, and the internet-of-things, are tasks that do generally scale badly with the CPS size. This work introduces a model-free fault detection and diagnosis system (FDDS) designed, having in mind scalability issues, so as to be able to detect and isolate faults in CPSs characterised by a large number of sensors. Following the model-free approach, the proposed FDDS learns the nominal fault-free conditions of the large-scale CPS autonomously by exploiting the temporal and spatial relationships existing among sensor data. The novelties in this paper reside in 1) a clustering method proposed to partition the large-scale CPS into groups of highly correlated sensors in order to grant scalability of the proposed FDDS, and 2) the design of model- and fault-free mechanisms to detect and isolate multiple sensor faults, and disambiguate between sensor faults and time variance of the physical phenomenon the cyber layer of CPS inspects.
机译:在关键物理基础设施,智能建筑/城市和物联网等网络物理系统(CPS)中,检测并隔离故障通常会严重影响CPS的规模。这项工作介绍了一种无模型故障检测和诊断系统(FDDS),该系统设计时考虑了可伸缩性问题,以便能够检测和隔离以大量传感器为特征的CPS中的故障。遵循无模型方法,提出的FDDS通过利用传感器数据之间存在的时间和空间关系,自主学习大型CPS的名义无故障条件。本文的新颖之处在于:1)提出了一种将大型CPS划分为高度相关的传感器组的聚类方法,以使所提出的FDDS具有可扩展性; 2)设计了无模型和无故障机制,以实现以下目的:检测并隔离多个传感器故障,并消除传感器故障和CPS网络层检查的物理现象的时间变化之间的歧义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号