首页> 外文期刊>Control Engineering Practice >Model-free fault detection and isolation of a benchmark process control system based on multiple classifiers techniques-A comparative study
【24h】

Model-free fault detection and isolation of a benchmark process control system based on multiple classifiers techniques-A comparative study

机译:基于多分类器技术的基准过程控制系统的无模型故障检测与隔离-对比研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a combined data-driven framework for fault detection and isolation (FDI) based on the ensemble of diverse classification schemes. The proposed FDI scheme is configured in series and parallel forms in the sense that in series form the decision on the occurrence of fault is made in FD module, and subsequently, the FI module coupled to the FD module will be activated for fault indication purposes. On the other hand, in parallel form a single module is employed for FDI purposes, simultaneously. In other words, two separate multiple-classifiers schemes are presented by using fourteen various statistical and non-statistical classification schemes. Furthermore, in this study, a novel ensemble classification scheme namely blended learning (BL) is proposed for the first time where single and boosted classifiers are blended as the local classifiers in order to enrich the classification performance. Single-classifier schemes are also exploited in FDI modules along with the ensemble-classifier methods for comparison purposes. In order to show the performance of proposed FDI method, it was also tested and validated on DAMADICS actuator system benchmark. Besides, comparative study with the related works done on this benchmark is provided to show the pros and cons of the proposed FDI method.
机译:本文提出了一个基于数据分类的综合的基于故障分类的集成的故障检测和隔离(FDI)框架。所提出的FDI方案以串联和并联形式进行配置,其含义是:在FD模块中以故障形式做出决定,然后,出于故障指示的目的,将激活与FD模块耦合的FI模块。另一方面,并​​行形式的单个模块同时用于FDI。换句话说,通过使用十四种不同的统计和非统计分类方案,提出了两个单独的多重分类器方案。此外,在本研究中,首次提出了一种新的集成分类方案,即混合学习(BL),其中将单个和增强分类器作为局部分类器进行混合,以丰富分类性能。为了进行比较,FDI模块中还使用了单分类器方案以及集成分类器方法。为了显示所提出的FDI方法的性能,还对DAMADICS执行器系统基准进行了测试和验证。此外,还提供了在此基准上进行的相关研究的对比研究,以证明拟议中的外国直接投资方法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号