首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization Systems
【24h】

AF-DCGAN: Amplitude Feature Deep Convolutional GAN for Fingerprint Construction in Indoor Localization Systems

机译:AF-DCGAN:幅度具有深卷积GaN,用于室内定位系统中的指纹结构

获取原文
获取原文并翻译 | 示例

摘要

With widely deployed WiFi network and the uniqueness feature (fingerprint) of wireless channel information, fingerprinting based WiFi positioning is currently the mainstream indoor positioning method, in which fingerprint database construction is crucial. However, for accuracy, this approach requires enough data to be sampled at many reference points, which consumes excessive efforts and time. In this paper, we collect Channel State Information (CSI) data at reference points by the method of device-free localization, then we convert collected CSI data into amplitude feature maps and extend the fingerprint database using the proposed Amplitude-Feature Deep Convolutional Generative Adversarial Network (AF-DCGAN) model. The use of AF-DCGAN accelerates convergence during the training phase, and substantially increases the diversity of the CSI amplitude feature map. The extended fingerprint database both reduces the human effort involved in fingerprint database construction and the accuracy of an indoor localization system, as demonstrated in the experiments.
机译:通过广泛部署的WiFi网络和无线信道信息的唯一特征(指纹),基于指纹的WiFi定位是目前主流室内定位方法,其中指纹数据库结构至关重要。然而,为了准确性,这种方法需要在许多参考点中采样足够的数据,这消耗了过度努力和时间。在本文中,我们通过无设备定位的方法在参考点收集信道状态信息(CSI)数据,然后我们将收集的CSI数据转换为幅度特征映射并使用所提出的幅度特征深卷积生成的对方扩展指纹数据库网络(AF-DCGAN)模型。在训练阶段期间,使用AF-DCGAN加速收敛,并且基本上增加了CSI幅度特征图的多样性。如实验中所示,扩展指纹数据库都减少了指纹数据库构建和室内定位系统的准确性所涉及的人力努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号