首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Reducing Parameter Value Uncertainty in Discrete Bayesian Network Learning: A Semantic Fuzzy Bayesian Approach
【24h】

Reducing Parameter Value Uncertainty in Discrete Bayesian Network Learning: A Semantic Fuzzy Bayesian Approach

机译:降低离散贝叶斯网络学习中的参数价值不确定性:一种语义模糊贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Bayesian network has gained increasing popularity among the data scientists and research communities, because of its inherent capability of capturing probabilistic information and reasoning with uncertain knowledge. However, the discrete Bayesian learning, with continuous and categorical variables, often shows poor performance because of parameter value uncertainty, arising due to strict boundary value of the discretized data and lack of knowledge on domain semantics. In this work, we propose semFBnet, a variant of Bayesian network with incorporated fuzziness and semantic knowledge, to reduce the uncertainty during parameter learning. The performance of semFBnet has been validated with prediction of daily meteorological conditions in two states of India, namely West Bengal and Delhi, for the years 2015 and 2016, respectively. The study of Dawid-Sebastiani score and the confidence interval analysis, in comparison with the state-of-the-art and benchmark prediction techniques, demonstrate the effectiveness of the proposed semFBnet in reducing parameter value uncertainty.
机译:贝叶斯网络在数据科学家和研究社区之间取得了越来越受欢迎,因为它具有捕捉概率信息和不确定知识的推理的固有能力。然而,具有连续和分类变量的离散贝叶斯学习通常会由于参数值不确定性而导致的性能差,由于离散数据的严格边界值以及域语义缺乏知识。在这项工作中,我们提出了一个贝叶斯网络的变种,其中包含了一种模糊和语义知识的变种,以减少参数学习期间的不确定性。 SEMFBNET的表现已经验证了2015年和2016年的两国印度州的两种州的日常气象状况预测。与现有技术和基准预测技术相比,Dawid-Sebastiani评分和置信区间分析的研究证明了所提出的SEMFBNET在减少参数值不确定性方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号