首页> 外文学位 >Bayesian ranking and selection models for discrete network design problems with uncertainties and multiple environmental objectives.
【24h】

Bayesian ranking and selection models for discrete network design problems with uncertainties and multiple environmental objectives.

机译:针对具有不确定性和多个环境目标的离散网络设计问题的贝叶斯排名和选择模型。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we develop a comprehensive Bayesian Ranking and Selection (R&S) modeling framework for single and multi-objective Network Design Problem with Uncertainty (NDPU). NPDU is a classical problem in transportation sciences and engineering. Due to the complex bi-level nature, NDPU is usually solved with heuristic algorithms where the objective value ofmany candidate solutions are "simulated" for evaluation. As the size of the transportation network can be large, the evaluation of objective values often become the computational bottleneck and should be kept to minimum numbers. On the other hand, most current formulations for (NDPU) characterize uncertainty as a discrete scenario set and tend not to fully explore the inherent correlations among alternatives. Therefore, we feel there is room for improving the efficiency of NDPU solution algorithms with a more rigorous statistical learning model. In Chapter 2, we formulate the NDPU problem as a Constrained Bayesian Ranking and Selection (R&S) problem with exact correlated beliefs. In this formulation, each solution to the NDPU problem represents an "alternative" and the corresponding objective value represents a "reward" we want to maximize. Uncertainties in the objective values are modeled by normal distributions of the rewards and constraints of the NDPU problem are utilized for pre-eliminating infeasible solutions. At each sampling iteration, we update our belief about the distribution of all alternative performances and use the cumulative sampling history to make the next sampling decision. We use a customized version of the Knowledge Gradient policy with Correlated Beliefs (KGCB) to account for constraints and unknown variances of the rewards. Case studies are conducted on transportation networks of different sizes, using popular heuristics such as Genetic Algorithm and Simulation Annealing as comparisons. Results show that the Bayesian R&S model generally provide better accuracy and convergence rate, particularly in scenarios with uncertainty and larger networks. In Chapter 3, we build upon our model Bayesian R&S model in Chapter 2 to improve its performance under large number of projects/alternatives. The new model features 1) a recursively updated linear approximation of the upper-level objective function using Gaussian-binary basis functions, and 2) A surrogateassisted knowledge gradient sampling policy which utilizes the optimal solution of the approximated surrogate objective function to constraint the scale of the expensive knowledge gradient calculation. With the two features the computational complexity of our algorithm is reduced to only a low degree (typically. 2) polynomial of the number of projects. Case studies are conducted on the Sioux Fall network and Anaheim network with as many as 20 projects and over 1,000,000 possible network configurations. Results showed that this parametric Bayesian R&S model is able to identify highly optimal solutions in only around 100 iterations, significantly outpacing our bench-marking Genetic Algorithmand Simulated Annealing Algorithm in both convergence speed and computational cost. Our new method provides a highly scalable framework for discreteNDPUwithout sacrificingmuch of the performance advantage of Bayesian R&S models. It also extends the Bayesian R&S model and the knowledge gradient sampling policies to generic large-scale discrete optimization problems, which provides valuable insights for a large class of similar optimization and learning problems. In Chapter 4, we further extend the Bayesian R&S model to the Multi- Objective discrete Network Design Problem with Uncertainty (MONDPU), an emerging area in transportation planning due to the need for sustainable transportation systems. In this formulation, we put independent parametric beliefs on the expected reward of each objective function like we did in Chapter 3 and update themin parallel through sequential samples. We define amulti-objective version of the Knowledge Gradient policy with Correlated Beliefs which use a crowding distance metric to ensure the diversity of the Pareto optimal front. Case studies are conducted on the Sioux Fall network and Anaheim network. Results showed that our multi-objective Bayesian R&S model is able to identify a very diverse set of highly optimal solutions under very limited budget, significantly out-performing the bench-marking NSGA-II algorithm in both solution quality and practicality. Our model is also the first to extend the Bayesian R&S model and the knowledge gradient sampling policies to generic multi-objective problems. In summary, the Bayesian R&S formulation is well-suited for NDPU and MONDPU due to its uncertainty management capabilities and the sampling efficiency of knowledge-gradient related policies. The models provide an innovative statistical learning perspective to NDPU, which has mainly been studied as an optimization problem. The new formulation is intuitive to understand and easily applicable to similar discrete optimization problems such as the Optimal Sensor Location problem, Uncapcitated Fixed Charge Facility Location problem, etc. We believe the models themselves as well as this unique statistical perspective is of great interest and value for transportation network modelers and simulation optimization practitioners.
机译:本文针对不确定性的单目标和多目标网络设计问题,开发了一个综合的贝叶斯排名和选择(R&S)建模框架。 NPDU是运输科学与工程中的经典问题。由于复杂的双层性质,NDPU通常用启发式算法求解,在该算法中“模拟”许多候选解的目标值以进行评估。由于运输网络的规模可能很大,因此对目标值的评估通常会成为计算瓶颈,应将其保持在最小数量。另一方面,当前大多数针对(NDPU)的公式将不确定性描述为离散场景集,并且往往无法充分探讨替代方案之间的内在联系。因此,我们认为,使用更严格的统计学习模型可以提高NDPU解决方案算法的效率。在第二章中,我们将NDPU问题公式化为具有精确相关信念的约束贝叶斯排名和选择(R&S)问题。在这种表述中,NDPU问题的每个解决方案都代表一个“替代方案”,而相应的目标值则代表了我们要最大化的“奖励”。通过奖励的正态分布对目标值的不确定性进行建模,并使用NDPU问题的约束条件来预先消除不可行的解决方案。在每次采样迭代中,我们都会更新对所有替代性能分布的看法,并使用累积采样历史来做出下一个采样决策。我们使用具有相关信念(KGCB)的定制版本的知识梯度策略来说明约束和奖励的未知方差。通过比较流行的启发式方法(例如遗传算法和模拟退火),对不同规模的运输网络进行了案例研究。结果表明,贝叶斯R&S模型通常提供更好的准确性和收敛速度,尤其是在不确定性和较大网络的情况下。在第3章中,我们以第2章中的贝叶斯R&S模型为基础,以提高其在大量项目/替代方案下的性能。新模型具有以下特征:1)使用高斯二元基函数递归更新上层目标函数的线性逼近,以及2)替代辅助知识梯度采样策略,该策略利用近似替代目标函数的最优解来约束目标规模。昂贵的知识梯度计算。具有这两个功能,我们算法的计算复杂度仅降低到项目数量的一个低次多项式(通常为2)。在Sioux Fall网络和Anaheim网络上进行了案例研究,涉及多达20个项目以及超过1,000,000种可能的网络配置。结果表明,该参数贝叶斯R&S模型仅能在大约100次迭代中识别出高度最优的解决方案,在收敛速度和计算成本上均大大超过了我们的基准遗传算法和模拟退火算法。我们的新方法为离散NDPU提供了高度可扩展的框架,而又不牺牲贝叶斯R&S模型的许多性能优势。它还将贝叶斯R&S模型和知识梯度采样策略扩展到通用的大规模离散优化问题,这为一类类似的优化和学习问题提供了宝贵的见解。在第4章中,我们将贝叶斯R&S模型进一步扩展到不确定性多目标离散网络设计问题(MONDPU),这是由于需要可持续交通运输系统而在交通规划中出现的一个新兴领域。在这种表述中,我们像在第3章中所做的那样,将独立的参数信念置于每个目标函数的预期收益上,并通过顺序样本更新最小并行。我们定义了具有相关信念的知识梯度策略的多目标版本,该策略使用拥挤距离度量来确保帕累托最优前沿的多样性。在Sioux Fall网络和Anaheim网络上进行了案例研究。结果表明,我们的多目标贝叶斯R&S模型能够在非常有限的预算下识别出非常多样化的一组高度最优的解决方案,在解决方案质量和实用性方面均明显优于基准NSGA-II算法。我们的模型也是第一个将贝叶斯R&S模型和知识梯度采样策略扩展到通用多目标问题的模型。总之,贝叶斯R&S公式由于其不确定性管理能力和知识梯度相关政策的采样效率而非常适合NDPU和MONDPU。这些模型为NDPU提供了创新的统计学习视角,这主要是作为优化问题进行研究的。新的公式直观易懂,可以轻松地应用于类似的离散优化问题,例如最佳传感器位置问题,无电容固定收费设施位置问题等。我们相信模型本身以及这种独特的统计观点都具有极大的兴趣和价值。适用于交通运输网络建模人员和仿真优化从业人员。

著录项

  • 作者

    Wang, Xun.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Transportation.;Operations Research.;Statistics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号